Improved Electric Vehicle Powertrain Incorporating a Lithium-Ion Battery and a Range Extender Zinc-Air Battery, Plus Associated Health and Economic Benefits

Download Improved Electric Vehicle Powertrain Incorporating a Lithium-Ion Battery and a Range Extender Zinc-Air Battery, Plus Associated Health and Economic Benefits PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (126 download)

DOWNLOAD NOW!


Book Synopsis Improved Electric Vehicle Powertrain Incorporating a Lithium-Ion Battery and a Range Extender Zinc-Air Battery, Plus Associated Health and Economic Benefits by : Steven Sherman

Download or read book Improved Electric Vehicle Powertrain Incorporating a Lithium-Ion Battery and a Range Extender Zinc-Air Battery, Plus Associated Health and Economic Benefits written by Steven Sherman and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As the world confronts the serious challenge posed by anthropogenic climate change, electric vehicles have emerged as a serious candidate to displace gasoline-burning vehicles. In spite of the environmental and operational advantages of electric vehicles, however, and in spite of billions in investment, electric vehicles have not attained meaningful market share in the main national vehicle markets. This is a serious problem not only for climate change mitigation but also for air pollution mitigation, given the substantial air pollution generated by vehicles. The inability of electric vehicles to attain market share may be due to the inadequacies of the lithium-ion batteries which power electric vehicles, and which are heavy and expensive. In this work an electric vehicle with a novel powertrain is designed, optimized and modelled. The novel powertrain uses a lithium-ion battery as the primary energy storage system and a lighter and cheaper zinc-air battery as a range extender. The first objective of this work is to compare this novel powertrain to a conventional electric vehicle powertrain and quantify the benefits. The optimized two-battery electric vehicle achieves 400 km of range, over 12 years of zinc-air battery life and an MSRP of $26,300 - over $5000 lower than that of the conventional electric vehicle. As part of this work, it is necessary to create a zinc-air cell model based on academic literature, since there are no commercially available rechargeable zinc-air cells that are suitable for use in vehicles. The cell model achieved 10% greater specific energy to the lithium-ion cell at a much lower price. An improved cell model achieved even greater specific energy - 65% greater than the lithium-ion cell. The second objective of this work is to analyze the air pollution impacts of electric vehicles in a local context. Specifically, the air pollution impact of increasing levels of electric vehicles on Highway 401 is simulated. Using Ontario Ministry of Transportation data for traffic flows on Highway 401, pollution modelling software and Transport Canada guidance it is estimated that pollution from Highway 401 costs $18.5M per year, and that replacing all the light passenger vehicles with electric vehicles could reduce these costs by 45.6%. The modelling demonstrates that NOx and PM2.5 are the costliest pollutants, and that PM2.5 experiences the least relative reduction in emissions with increased electric vehicle penetration.

Battery Technology for Electric Vehicles

Download Battery Technology for Electric Vehicles PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1317608690
Total Pages : 147 pages
Book Rating : 4.3/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Battery Technology for Electric Vehicles by : Albert N. Link

Download or read book Battery Technology for Electric Vehicles written by Albert N. Link and published by Routledge. This book was released on 2015-04-10 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electric drive vehicles (EDVs) are seen on American roads in increasing numbers. Related to this market trend and critical for it to increase are improvements in battery technology. Battery Technology for Electric Vehicles examines in detail at the research support from the U.S. Department of Energy (DOE) for the development of nickel-metal-hydride (NiMH) and lithium-ion (Li-ion) batteries used in EDVs. With public support comes accountability of the social outcomes associated with public investments. The book overviews DOE investments in advanced battery technology, documents the adoption of these batteries in EDVs on the road, and calculates the economic benefits associated with these improved technologies. It provides a detailed global evaluation of the net social benefits associated with DOEs investments, the results of the benefit-to-cost ratio of over 3.6-to-1, and the life-cycle approach that allows adopted EDVs to remain on the road over their expected future life, thus generating economic and environmental health benefits into the future.

Extended Range Electric Vehicle Powertrain Simulation and Comparison with Consideration of Fuel Cell and Metal-air Battery

Download Extended Range Electric Vehicle Powertrain Simulation and Comparison with Consideration of Fuel Cell and Metal-air Battery PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 92 pages
Book Rating : 4.:/5 (973 download)

DOWNLOAD NOW!


Book Synopsis Extended Range Electric Vehicle Powertrain Simulation and Comparison with Consideration of Fuel Cell and Metal-air Battery by : Caixia Wang

Download or read book Extended Range Electric Vehicle Powertrain Simulation and Comparison with Consideration of Fuel Cell and Metal-air Battery written by Caixia Wang and published by . This book was released on 2016 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: The automotive industry has been in a period of energy transformation from fossil fuels to a clean energy economy due to the economic pressures resulting from the energy crisis and the need for stricter environmental protection policies. Among various clean energy systems are electric vehicles, with lithium-ion batteries have the largest market share because of their stable performance and they are a relatively mature technology. However, two disadvantages limit the development of electric vehicles: charging time and energy density. In order to mitigate these challenges, vehicle Original Equipment Manufacturers (OEMs) have developed different vehicle architectures to extend the vehicle range, including the Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), and Extended Range Electric Vehicle (EREV). In this project, two advanced EREV powertrains have been modeled and simulated by using a lithium-ion battery as the primary energy source, with the combination of a fuel cell (FCV) or zinc-air battery as the range extenders. These two technologies were chosen as potential range extenders because of their high energy density and low life cycle emissions. The objective of this project is to compare the combined energy system (zinc-air and lithium-ion battery, fuel cell and lithium-ion battery) powered vehicles with gasoline powered vehicles (baseline vehicle, ICE engine extended range electric vehicle) and battery electric vehicles (BEV) in dimensions of energy consumption, range, emissions, cost, and customer acceptance. In order to achieve this goal, a unique zinc-air battery model was developed in this work with consideration of research data and current market status, and a control logic of the dual energy systems powertrain was created in the vehicle modeling software. A 2015 Chevrolet Camaro had been chosen as the vehicle architecture platform, with modelling of the five vehicle powertrains being built within Autonomie. This vehicle modeling software, developed by Argonne National Laboratory, runs with MATLAB/Simulink, and contains embedded drive cycles and analysis tools needed to perform the necessary simulations. Since the emission analysis in the Autonomie model only considers the vehicle in energy consumption and tailpipe emissions, therefore a Well-to-Wheel analysis method is introduced to evaluate the energy life cycle. This method takes into account the emissions from the energy production and considers the vehicle tailpipe emission. After finished all the simulations, a decision matrix was developed to compare these five powertrains from the metrics of energy consumption, emissions, customer acceptance, and life cycle cost. Three substantial conclusions were obtained from the comparison: The powertrains without use engine and gasoline as the power source have the lower tailpipe emissions and greenhouse gas emissions. The powertrains based on battery power alone, i.e. metal air extended range electric vehicle (MA-EREV) and battery electric vehicle (BEV) are not able to achieve the total range target, likely because of the relative high vehicle mass caused by the weight of the battery pack. However MA-EREV got the highest marks compared to other powertrains. However, metal-air battery is a new technology, and there are no prototypes of the technology, thus full commercialization is expected to take some time.

Battery Technology for Electric Vehicles

Download Battery Technology for Electric Vehicles PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 9781315749303
Total Pages : 0 pages
Book Rating : 4.7/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Battery Technology for Electric Vehicles by : Albert N. Link

Download or read book Battery Technology for Electric Vehicles written by Albert N. Link and published by Routledge. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electric drive vehicles (EDVs) are seen on American roads in increasing numbers. Related to this market trend and critical for it to increase are improvements in battery technology. Battery Technology for Electric Vehicles examines in detail at the research support from the U.S. Department of Energy (DOE) for the development of nickel-metal-hydride (NiMH) and lithium-ion (Li-ion) batteries used in EDVs. With public support comes accountability of the social outcomes associated with public investments. The book overviews DOE investments in advanced battery technology, documents the adoption of these batteries in EDVs on the road, and calculates the economic benefits associated with these improved technologies. It provides a detailed global evaluation of the net social benefits associated with DOEs investments, the results of the benefit-to-cost ratio of over 3.6-to-1, and the life-cycle approach that allows adopted EDVs to remain on the road over their expected future life, thus generating economic and environmental health benefits into the future.

Overcoming Barriers to Electric-Vehicle Deployment

Download Overcoming Barriers to Electric-Vehicle Deployment PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309284511
Total Pages : 102 pages
Book Rating : 4.3/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Overcoming Barriers to Electric-Vehicle Deployment by : National Research Council

Download or read book Overcoming Barriers to Electric-Vehicle Deployment written by National Research Council and published by National Academies Press. This book was released on 2013-06-18 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electric vehicle offers many promises-increasing U.S. energy security by reducing petroleum dependence, contributing to climate-change initiatives by decreasing greenhouse gas (GHG) emissions, stimulating long-term economic growth through the development of new technologies and industries, and improving public health by improving local air quality. There are, however, substantial technical, social, and economic barriers to widespread adoption of electric vehicles, including vehicle cost, small driving range, long charging times, and the need for a charging infrastructure. In addition, people are unfamiliar with electric vehicles, are uncertain about their costs and benefits, and have diverse needs that current electric vehicles might not meet. Although a person might derive some personal benefits from ownership, the costs of achieving the social benefits, such as reduced GHG emissions, are borne largely by the people who purchase the vehicles. Given the recognized barriers to electric-vehicle adoption, Congress asked the Department of Energy (DOE) to commission a study by the National Academies to address market barriers that are slowing the purchase of electric vehicles and hindering the deployment of supporting infrastructure. As a result of the request, the National Research Council (NRC)-a part of the National Academies-appointed the Committee on Overcoming Barriers to Electric-Vehicle Deployment. This committee documented their findings in two reports-a short interim report focused on near-term options, and a final comprehensive report. Overcoming Barriers to Electric-Vehicle Deployment fulfills the request for the short interim report that addresses specifically the following issues: infrastructure needs for electric vehicles, barriers to deploying the infrastructure, and possible roles of the federal government in overcoming the barriers. This report also includes an initial discussion of the pros and cons of the possible roles. This interim report does not address the committee's full statement of task and does not offer any recommendations because the committee is still in its early stages of data-gathering. The committee will continue to gather and review information and conduct analyses through late spring 2014 and will issue its final report in late summer 2014. Overcoming Barriers to Electric-Vehicle Deployment focuses on the light-duty vehicle sector in the United States and restricts its discussion of electric vehicles to plug-in electric vehicles (PEVs), which include battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The common feature of these vehicles is that their batteries are charged by being plugged into the electric grid. BEVs differ from PHEVs because they operate solely on electricity stored in a battery (that is, there is no other power source); PHEVs have internal combustion engines that can supplement the electric power train. Although this report considers PEVs generally, the committee recognizes that there are fundamental differences between PHEVs and BEVs.

The Handbook of Lithium-Ion Battery Pack Design

Download The Handbook of Lithium-Ion Battery Pack Design PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0443138087
Total Pages : 472 pages
Book Rating : 4.4/5 (431 download)

DOWNLOAD NOW!


Book Synopsis The Handbook of Lithium-Ion Battery Pack Design by : John T. Warner

Download or read book The Handbook of Lithium-Ion Battery Pack Design written by John T. Warner and published by Elsevier. This book was released on 2024-05-15 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology,?Second Edition provides a clear and concise explanation of EV and Li-ion batteries for readers that are new to the field. The second edition expands and updates all topics covered in the original book, adding more details to all existing chapters and including major updates to align with all of the rapid changes the industry has experienced over the past few years. This handbook offers a layman’s explanation of the history of vehicle electrification and battery technology, describing the various terminology and acronyms and explaining how to do simple calculations that can be used in determining basic battery sizing, capacity, voltage, and energy. By the end of this book the reader will have a solid understanding of the terminology around Li-ion batteries and be able to undertake simple battery calculations. The book is immensely useful to beginning and experienced engineers alike who are moving into the battery field. Li-ion batteries are one of the most unique systems in automobiles today in that they combine multiple engineering disciplines, yet most engineering programs focus on only a single engineering field. This book provides the reader with a reference to the history, terminology and design criteria needed to understand the Li-ion battery and to successfully lay out a new battery concept. Whether you are an electrical engineer, a mechanical engineer or a chemist, this book will help you better appreciate the inter-relationships between the various battery engineering fields that are required to understand the battery as an Energy Storage System. It gives great insights for readers ranging from engineers to sales, marketing, management, leadership, investors, and government officials. Adds a brief history of battery technology and its evolution to current technologies? Expands and updates the chemistry to include the latest types Discusses thermal runaway and cascading failure mitigation technologies? Expands and updates the descriptions of the battery module and pack components and systems?? Adds description of the manufacturing processes for cells, modules, and packs? Introduces and discusses new topics such as battery-as-a-service, cell to pack and cell to chassis designs, and wireless BMS?

Hybrid-electric Transit Buses

Download Hybrid-electric Transit Buses PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 116 pages
Book Rating : 4.X/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Hybrid-electric Transit Buses by : Northeast Advanced Vehicle Consortium

Download or read book Hybrid-electric Transit Buses written by Northeast Advanced Vehicle Consortium and published by . This book was released on 2000 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report presents an up-to-date description of emerging hybrid-electric drive technology for transit buses in the United States. The technology and its status, benefits, life-cycle costs, and deployment issues are discussed. The report is intended to provide transit agencies with information to compare the emissions and fuel economy expected from hybrid-electric transit buses with those expected from clean diesel or alternatively fueled buses.

STUDY OF BATTERY HEALTH CONSCIOUS POWERTRAIN ENERGY MANAGEMENT STRATEGIES FOR HYBRID ELECTRIC VEHICLES

Download STUDY OF BATTERY HEALTH CONSCIOUS POWERTRAIN ENERGY MANAGEMENT STRATEGIES FOR HYBRID ELECTRIC VEHICLES PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (114 download)

DOWNLOAD NOW!


Book Synopsis STUDY OF BATTERY HEALTH CONSCIOUS POWERTRAIN ENERGY MANAGEMENT STRATEGIES FOR HYBRID ELECTRIC VEHICLES by :

Download or read book STUDY OF BATTERY HEALTH CONSCIOUS POWERTRAIN ENERGY MANAGEMENT STRATEGIES FOR HYBRID ELECTRIC VEHICLES written by and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract : The goal of this research is to study the battery aging pattern for the application of hybrid electric vehicles (HEV) and advanced control algorithm to improve the performance of HEV energy management controller by maximizing fuel efficiency and minimizing battery aging speed at the same time. To achieve the combined goals, the tasks of this research can be laid out as follows. The first part studies the HEV model provided by Autonomie software and the electrochemical battery model to be built and integrated with the whole vehicle model. The battery model integrated is an averaged single particle model with the battery thermal aging features added. The battery aging will be quantified as the increasing of SEI layer and decreasing of battery capacity. The battery model was able to simulate the aging performance under different temperature, charge current, SOC and other operational conditions. The simulation results of the vehicle following certain driving cycles and the simulation results of battery voltage output are presented. The second part investigates the feasibility of the entire system to be running in a real-time hardware-in-the-loop system. The vehicle model together with the electrochemical battery model is built and loaded to the dSPACE simulator. The hybrid controller model is built and loaded to the dSPACE MicroAutoBox. The hybrid controller and dSPACE simulator communicate in real-time with vehicle components information coming from plant model and the control signals coming from the MicroAutoBox. The vehicle model together with the battery model is able to be running in Simulator with the battery model simulated correctly and providing battery aging features in real-time. The third part of the research looks into the application of nonlinear model predictive control (NMPC) in the hybrid controller. To meet the goal of minimizing fuel consumption and battery aging speed, the nonlinear model predictive control without concern of battery aging is first studied. The predictive model is built to predict the dynamic performance of battery pack, the E-motors, the engine and the vehicle powertrain key part - planetary gear set. A cost function is built to provide the best control performance for our case. The performance of the NMPC is compared with the rule-based controller. And the performance of NMPC with different weighting factors is compared and analyzed. Following the previous part, the NMPC with the concern of battery aging is also studied and simulated using the vehicle and battery model built and integrated into the first part. By changing the cost function of the NMPC, the battery aging performance is greatly improved compared with that of the previous part. The studied NMPC is able to maintain the fuel economy at similar or even better level compared with the NMPC without battery aging concern. The last part of the research studies the modeling of a single shaft parallel hybrid electric vehicle built from the dSPACE Automotive Simulation Model (ASM) and the AutoLion-ST battery simulation software. Both commercial software packages provide solid physics-based modeling of HEV components such as E-motor, the lithium-ion battery pack, the engine etc., the entire vehicle model is built using these individual models to study the battery performance under different environmental and operational conditions.

Effect of Temperature on Lithium-iron Phosphate Battery Performance and Plug-in Hybrid Electric Vehicle Range

Download Effect of Temperature on Lithium-iron Phosphate Battery Performance and Plug-in Hybrid Electric Vehicle Range PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 118 pages
Book Rating : 4.:/5 (835 download)

DOWNLOAD NOW!


Book Synopsis Effect of Temperature on Lithium-iron Phosphate Battery Performance and Plug-in Hybrid Electric Vehicle Range by : Joshua Lo

Download or read book Effect of Temperature on Lithium-iron Phosphate Battery Performance and Plug-in Hybrid Electric Vehicle Range written by Joshua Lo and published by . This book was released on 2013 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasing pressure from environmental, political and economic sources are driving the development of an electric vehicle powertrain. The advent of hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs) bring significant technological and design challenges. The success of electric vehicle powertrains depends heavily on the robustness and longevity of the on-board energy storage system or battery. Currently, lithium-ion batteries are the most suitable technology for use in electrified vehicles. The majority of literature and commercially available battery performance data assumes a working environment that is at room temperature. However, an electrified vehicle battery will need to perform under a wide range of temperatures, including the extreme cold and hot environments. Battery performance changes significantly with temperature, so the effects of extreme temperature operation must be understood and accounted for in electrified vehicle design. In order to meet the aggressive development schedules of the automotive industry, electrified powertrain models are often employed. The development of a temperature-dependent battery model with an accompanying vehicle model would greatly enable model based design and rapid prototyping efforts. This paper empirically determines the performance characteristics of an A123 lithium iron-phosphate battery, re-parameterizes the battery model of a vehicle powertrain model, and estimates the electric range of the modeled vehicle at various temperatures. The battery and vehicle models will allow future development of cold-weather operational strategies. As expected the vehicle range is found to be far lower with a cold battery back. This effect is seen to be much more pronounced in the aggressive US06 drive cycle where the all-electric range was found to be 44% lower at -20°C than at 25°C. Also it was found that there was minimal impact of temperature on range above 25°C.

Electric Vehicle Technology Explained

Download Electric Vehicle Technology Explained PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118361121
Total Pages : 342 pages
Book Rating : 4.1/5 (183 download)

DOWNLOAD NOW!


Book Synopsis Electric Vehicle Technology Explained by : James Larminie

Download or read book Electric Vehicle Technology Explained written by James Larminie and published by John Wiley & Sons. This book was released on 2012-07-11 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fully updated throughout, Electric Vehicle Technology, Second Edition, is a complete guide to the principles, design and applications of electric vehicle technology. Including all the latest advances, it presents clear and comprehensive coverage of the major aspects of electric vehicle development and offers an engineering-based evaluation of electric motor scooters, cars, buses and trains. This new edition includes: important new chapters on types of electric vehicles, including pickup and linear motors, overall efficiencies and energy consumption, and power generation, particularly for zero carbon emissions expanded chapters updating the latest types of EV, types of batteries, battery technology and other rechargeable devices, fuel cells, hydrogen supply, controllers, EV modeling, ancillary system design, and EV and the environment brand new practical examples and case studies illustrating how electric vehicles can be used to substantially reduce carbon emissions and cut down reliance on fossil fuels futuristic concept models, electric and high-speed trains and developments in magnetic levitation and linear motors an examination of EV efficiencies, energy consumption and sustainable power generation. MATLAB® examples can be found on the companion website www.wiley.com/go/electricvehicle2e Explaining the underpinning science and technology, this book is essential for practicing electrical, automotive, power, control and instrumentation engineers working in EV research and development. It is also a valuable reference for academics and students in automotive, mechanical, power and electrical engineering.

Electric and Hybrid Vehicles

Download Electric and Hybrid Vehicles PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429956355
Total Pages : 702 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Electric and Hybrid Vehicles by : Iqbal Husain

Download or read book Electric and Hybrid Vehicles written by Iqbal Husain and published by CRC Press. This book was released on 2021-02-22 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly revised third edition of this widely praised, bestselling textbook presents a comprehensive systems-level perspective of electric and hybrid vehicles with emphasis on technical aspects, mathematical relationships and basic design guidelines. The emerging technologies of electric vehicles require the dedication of current and future engineers, so the target audience for the book is the young professionals and students in engineering eager to learn about the area. The book is concise and clear, its mathematics are kept to a necessary minimum and it contains a well-balanced set of contents of the complex technology. Engineers of multiple disciplines can either get a broader overview or explore in depth a particular aspect of electric or hybrid vehicles. Additions in the third edition include simulation-based design analysis of electric and hybrid vehicles and their powertrain components, particularly that of traction inverters, electric machines and motor drives. The technology trends to incorporate wide bandgap power electronics and reduced rare-earth permanent magnet electric machines in the powertrain components have been highlighted. Charging stations are a critical component for the electric vehicle infrastructure, and hence, a chapter on vehicle interactions with the power grid has been added. Autonomous driving is another emerging technology, and a chapter is included describing the autonomous driving system architecture and the hardware and software needs for such systems. The platform has been set in this book for system-level simulations to develop models using various softwares used in academia and industry, such as MATLAB®/Simulink, PLECS, PSIM, Motor-CAD and Altair Flux. Examples and simulation results are provided in this edition using these software tools. The third edition is a timely revision and contribution to the field of electric vehicles that has reached recently notable markets in a more and more environmentally sensitive world.

Advances in Lithium-Ion Batteries

Download Advances in Lithium-Ion Batteries PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0306475081
Total Pages : 514 pages
Book Rating : 4.3/5 (64 download)

DOWNLOAD NOW!


Book Synopsis Advances in Lithium-Ion Batteries by : Walter van Schalkwijk

Download or read book Advances in Lithium-Ion Batteries written by Walter van Schalkwijk and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the decade since the introduction of the first commercial lithium-ion battery research and development on virtually every aspect of the chemistry and engineering of these systems has proceeded at unprecedented levels. This book is a snapshot of the state-of-the-art and where the work is going in the near future. The book is intended not only for researchers, but also for engineers and users of lithium-ion batteries which are found in virtually every type of portable electronic product.

Life Cycle Impact Assessment

Download Life Cycle Impact Assessment PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9401797447
Total Pages : 345 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Life Cycle Impact Assessment by : Michael Z. Hauschild

Download or read book Life Cycle Impact Assessment written by Michael Z. Hauschild and published by Springer. This book was released on 2015-03-24 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a detailed presentation of the principles and practice of life cycle impact assessment. As a volume of the LCA compendium, the book is structured according to the LCIA framework developed by the International Organisation for Standardisation (ISO)passing through the phases of definition or selection of impact categories, category indicators and characterisation models (Classification): calculation of category indicator results (Characterisation); calculating the magnitude of category indicator results relative to reference information (Normalisation); and converting indicator results of different impact categories by using numerical factors based on value-choices (Weighting). Chapter one offers a historical overview of the development of life cycle impact assessment and presents the boundary conditions and the general principles and constraints of characterisation modelling in LCA. The second chapter outlines the considerations underlying the selection of impact categories and the classification or assignment of inventory flows into these categories. Chapters three through thirteen exploreall the impact categories that are commonly included in LCIA, discussing the characteristics of each followed by a review of midpoint and endpoint characterisation methods, metrics, uncertainties and new developments, and a discussion of research needs. Chapter-length treatment is accorded to Climate Change; Stratospheric Ozone Depletion; Human Toxicity; Particulate Matter Formation; Photochemical Ozone Formation; Ecotoxicity; Acidification; Eutrophication; Land Use; Water Use; and Abiotic Resource Use. The final two chapters map out the optional LCIA steps of Normalisation and Weighting.

Lightweight Electric/Hybrid Vehicle Design

Download Lightweight Electric/Hybrid Vehicle Design PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080535518
Total Pages : 285 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Lightweight Electric/Hybrid Vehicle Design by : John Fenton

Download or read book Lightweight Electric/Hybrid Vehicle Design written by John Fenton and published by Elsevier. This book was released on 2001-07-04 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lightweight Electric/Hybrid Vehicle Design covers the particular automotive design approach required for hybrid/electrical drive vehicles. There is currently huge investment world-wide in electric vehicle propulsion, driven by concern for pollution control and depleting oil resources. The radically different design demands of these new vehicles requires a completely new approach that is covered comprehensively in this book. The book explores the rather dramatic departures in structural configuration necessary for purpose-designed electric vehicle including weight removal in the mechanical systems. It also provides a comprehensive review of the design process in the electric hybrid drive and energy storage systems. Ideal for automotive engineering students and professionals Lightweight Electric/Hybrid Vehicle Design provides a complete introduction to this important new sector of the industry. Comprehensive coverage of all design aspects of electric/hybrid cars in a single volume Packed with case studies and applications In-depth treatment written in a text book style (rather than a theoretical specialist text style)

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles

Download Modern Electric, Hybrid Electric, and Fuel Cell Vehicles PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429998244
Total Pages : 546 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Modern Electric, Hybrid Electric, and Fuel Cell Vehicles by : Mehrdad Ehsani

Download or read book Modern Electric, Hybrid Electric, and Fuel Cell Vehicles written by Mehrdad Ehsani and published by CRC Press. This book was released on 2018-02-02 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software.

Electric Vehicle Integration into Modern Power Networks

Download Electric Vehicle Integration into Modern Power Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461401348
Total Pages : 331 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Electric Vehicle Integration into Modern Power Networks by : Rodrigo Garcia-Valle

Download or read book Electric Vehicle Integration into Modern Power Networks written by Rodrigo Garcia-Valle and published by Springer Science & Business Media. This book was released on 2012-11-29 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES-UETP umbrella in 2010 and 2011, this contributed volume consists of nine chapters written by leading researchers and professionals from the industry as well as academia.

Integrated Computational Life Cycle Engineering for Traction Batteries

Download Integrated Computational Life Cycle Engineering for Traction Batteries PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030829340
Total Pages : 205 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Integrated Computational Life Cycle Engineering for Traction Batteries by : Felipe Cerdas

Download or read book Integrated Computational Life Cycle Engineering for Traction Batteries written by Felipe Cerdas and published by Springer Nature. This book was released on 2021-08-30 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: The environmental burden caused by private transportation represents a significant challenge towards sustainability. Electric vehicles are considered a key technology to reduce the environmental impact caused by the mobility sector. However, the global adoption of electromobility implies shift and diversification of the environmental impacts caused by the transportation sector mainly driven by the production of the battery system. Modeling the life cycle environmental impacts of traction batteries is a time demanding and interdisciplinary task as it involves a high variability and requires an in-depth knowledge of the product system under analysis. To face these challenges, an Integrated Computational Life Cycle Engineering ICLCE framework for EVs has been developed. The ICLCE framework described aims at supporting fast and comprehensive modelling of complex foreground systems in the electromobility field and their interaction with diverse backgrounds and partial contexts.