Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Hypersurfaces With Constant Mean Curvature And Prescribed Area
Download Hypersurfaces With Constant Mean Curvature And Prescribed Area full books in PDF, epub, and Kindle. Read online Hypersurfaces With Constant Mean Curvature And Prescribed Area ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Constant Mean Curvature Surfaces with Boundary by : Rafael López
Download or read book Constant Mean Curvature Surfaces with Boundary written by Rafael López and published by Springer Science & Business Media. This book was released on 2013-08-31 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media or for capillary phenomena. Further, as most techniques used in the theory of CMC surfaces not only involve geometric methods but also PDE and complex analysis, the theory is also of great interest for many other mathematical fields. While minimal surfaces and CMC surfaces in general have already been treated in the literature, the present work is the first to present a comprehensive study of “compact surfaces with boundaries,” narrowing its focus to a geometric view. Basic issues include the discussion whether the symmetries of the curve inherit to the surface; the possible values of the mean curvature, area and volume; stability; the circular boundary case and the existence of the Plateau problem in the non-parametric case. The exposition provides an outlook on recent research but also a set of techniques that allows the results to be expanded to other ambient spaces. Throughout the text, numerous illustrations clarify the results and their proofs. The book is intended for graduate students and researchers in the field of differential geometry and especially theory of surfaces, including geometric analysis and geometric PDEs. It guides readers up to the state-of-the-art of the theory and introduces them to interesting open problems.
Book Synopsis Calculus of Variations and Geometric Evolution Problems by : F. Bethuel
Download or read book Calculus of Variations and Geometric Evolution Problems written by F. Bethuel and published by Springer. This book was released on 2006-11-14 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: The international summer school on Calculus of Variations and Geometric Evolution Problems was held at Cetraro, Italy, 1996. The contributions to this volume reflect quite closely the lectures given at Cetraro which have provided an image of a fairly broad field in analysis where in recent years we have seen many important contributions. Among the topics treated in the courses were variational methods for Ginzburg-Landau equations, variational models for microstructure and phase transitions, a variational treatment of the Plateau problem for surfaces of prescribed mean curvature in Riemannian manifolds - both from the classical point of view and in the setting of geometric measure theory.
Book Synopsis Minimal Surfaces I by : Ulrich Dierkes
Download or read book Minimal Surfaces I written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal surfaces I is an introduction to the field of minimal surfaces and apresentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can alsobe useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory fornonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature.
Book Synopsis Motion by Mean Curvature and Related Topics by : Giuseppe Buttazzo
Download or read book Motion by Mean Curvature and Related Topics written by Giuseppe Buttazzo and published by Walter de Gruyter. This book was released on 2011-06-01 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Book Synopsis Biharmonic Submanifolds And Biharmonic Maps In Riemannian Geometry by : Ye-lin Ou
Download or read book Biharmonic Submanifolds And Biharmonic Maps In Riemannian Geometry written by Ye-lin Ou and published by World Scientific. This book was released on 2020-04-04 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book aims to present a comprehensive survey on biharmonic submanifolds and maps from the viewpoint of Riemannian geometry. It provides some basic knowledge and tools used in the study of the subject as well as an overall picture of the development of the subject with most up-to-date important results.Biharmonic submanifolds are submanifolds whose isometric immersions are biharmonic maps, thus biharmonic submanifolds include minimal submanifolds as a subclass. Biharmonic submanifolds also appeared in the study of finite type submanifolds in Euclidean spaces.Biharmonic maps are maps between Riemannian manifolds that are critical points of the bienergy. They are generalizations of harmonic maps and biharmonic functions which have many important applications and interesting links to many areas of mathematics and theoretical physics.Since 2000, biharmonic submanifolds and maps have become a vibrant research field with a growing number of researchers around the world, with many interesting results have been obtained.This book containing basic knowledge, tools for some fundamental problems and a comprehensive survey on the study of biharmonic submanifolds and maps will be greatly beneficial for graduate students and beginning researchers who want to study the subject, as well as researchers who have already been working in the field.
Book Synopsis The Cauchy Problem in General Relativity by : Hans Ringström
Download or read book The Cauchy Problem in General Relativity written by Hans Ringström and published by European Mathematical Society. This book was released on 2009 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general theory of relativity is a theory of manifolds equipped with Lorentz metrics and fields which describe the matter content. Einstein's equations equate the Einstein tensor (a curvature quantity associated with the Lorentz metric) with the stress energy tensor (an object constructed using the matter fields). In addition, there are equations describing the evolution of the matter. Using symmetry as a guiding principle, one is naturally led to the Schwarzschild and Friedmann-Lemaitre-Robertson-Walker solutions, modelling an isolated system and the entire universe respectively. In a different approach, formulating Einstein's equations as an initial value problem allows a closer study of their solutions. This book first provides a definition of the concept of initial data and a proof of the correspondence between initial data and development. It turns out that some initial data allow non-isometric maximal developments, complicating the uniqueness issue. The second half of the book is concerned with this and related problems, such as strong cosmic censorship. The book presents complete proofs of several classical results that play a central role in mathematical relativity but are not easily accessible to those without prior background in the subject. Prerequisites are a good knowledge of basic measure and integration theory as well as the fundamentals of Lorentz geometry. The necessary background from the theory of partial differential equations and Lorentz geometry is included.
Book Synopsis Mean Curvature Flow and Isoperimetric Inequalities by : Manuel Ritoré
Download or read book Mean Curvature Flow and Isoperimetric Inequalities written by Manuel Ritoré and published by Springer Science & Business Media. This book was released on 2010-01-01 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric flows have many applications in physics and geometry. The mean curvature flow occurs in the description of the interface evolution in certain physical models. This is related to the property that such a flow is the gradient flow of the area functional and therefore appears naturally in problems where a surface energy is minimized. The mean curvature flow also has many geometric applications, in analogy with the Ricci flow of metrics on abstract riemannian manifolds. One can use this flow as a tool to obtain classification results for surfaces satisfying certain curvature conditions, as well as to construct minimal surfaces. Geometric flows, obtained from solutions of geometric parabolic equations, can be considered as an alternative tool to prove isoperimetric inequalities. On the other hand, isoperimetric inequalities can help in treating several aspects of convergence of these flows. Isoperimetric inequalities have many applications in other fields of geometry, like hyperbolic manifolds.
Book Synopsis Differential Geometry by : Francisco J. Carreras
Download or read book Differential Geometry written by Francisco J. Carreras and published by Springer. This book was released on 2006-11-14 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of proceedings contains selected and refereed articles - both surveys and original research articles - on geometric structures, global analysis, differential operators on manifolds, cohomology theories and other topics in differential geometry.
Book Synopsis Manfredo P. do Carmo – Selected Papers by : Manfredo P. do Carmo
Download or read book Manfredo P. do Carmo – Selected Papers written by Manfredo P. do Carmo and published by Springer Science & Business Media. This book was released on 2012-04-02 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of selected academic papers demonstrates the significance of the contribution to mathematics made by Manfredo P. do Carmo. Twice a Guggenheim Fellow and the winner of many prestigious national and international awards, the professor at the institute of Pure and Applied Mathematics in Rio de Janeiro is well known as the author of influential textbooks such as Differential Geometry of Curves and Surfaces. The area of differential geometry is the main focus of this selection, though it also contains do Carmo's own commentaries on his life as a scientist as well as assessment of the impact of his researches and a complete list of his publications. Aspects covered in the featured papers include relations between curvature and topology, convexity and rigidity, minimal surfaces, and conformal immersions, among others. Offering more than just a retrospective focus, the volume deals with subjects of current interest to researchers, including a paper co-authored with Frank Warner on the convexity of hypersurfaces in space forms. It also presents the basic stability results for minimal surfaces in the Euclidean space obtained by the author and his collaborators. Edited by do Carmo's first student, now a celebrated academic in her own right, this collection pays tribute to one of the most distinguished mathematicians.
Book Synopsis Differential Geometry: Partial Differential Equations on Manifolds by : Robert Everist Greene
Download or read book Differential Geometry: Partial Differential Equations on Manifolds written by Robert Everist Greene and published by American Mathematical Soc.. This book was released on 1993 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Part 1 begins with a problem list by S.T. Yau, successor to his 1980 list ( Sem
Book Synopsis Gazette - Australian Mathematical Society by : Australian Mathematical Society
Download or read book Gazette - Australian Mathematical Society written by Australian Mathematical Society and published by . This book was released on 1996 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Differential Geometry in the Large by : Owen Dearricott
Download or read book Differential Geometry in the Large written by Owen Dearricott and published by Cambridge University Press. This book was released on 2020-10-22 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 2019 'Australian-German Workshop on Differential Geometry in the Large' represented an extraordinary cross section of topics across differential geometry, geometric analysis and differential topology. The two-week programme featured talks from prominent keynote speakers from across the globe, treating geometric evolution equations, structures on manifolds, non-negative curvature and Alexandrov geometry, and topics in differential topology. A joy to the expert and novice alike, this proceedings volume touches on topics as diverse as Ricci and mean curvature flow, geometric invariant theory, Alexandrov spaces, almost formality, prescribed Ricci curvature, and Kähler and Sasaki geometry.
Book Synopsis Surfaces with Constant Mean Curvature by : Katsuei Kenmotsu
Download or read book Surfaces with Constant Mean Curvature written by Katsuei Kenmotsu and published by American Mathematical Soc.. This book was released on 2003 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mean curvature of a surface is an extrinsic parameter measuring how the surface is curved in the three-dimensional space. A surface whose mean curvature is zero at each point is a minimal surface, and it is known that such surfaces are models for soap film. There is a rich and well-known theory of minimal surfaces. A surface whose mean curvature is constant but nonzero is obtained when we try to minimize the area of a closed surface without changing the volume it encloses. An easy example of a surface of constant mean curvature is the sphere. A nontrivial example is provided by the constant curvature torus, whose discovery in 1984 gave a powerful incentive for studying such surfaces. Later, many examples of constant mean curvature surfaces were discovered using various methods of analysis, differential geometry, and differential equations. It is now becoming clear that there is a rich theory of surfaces of constant mean curvature. In this book, the author presents numerous examples of constant mean curvature surfaces and techniques for studying them. Many finely rendered figures illustrate the results and allow the reader to visualize and better understand these beautiful objects. The book is suitable for advanced undergraduates, graduate students and research mathematicians interested in analysis and differential geometry.
Book Synopsis New Developments in Differential Geometry, Budapest 1996 by : J. Szenthe
Download or read book New Developments in Differential Geometry, Budapest 1996 written by J. Szenthe and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the Conference on Differential Geometry, Budapest, Hungary, July 27-30, 1996
Book Synopsis Isoperimetric Inequalities in Riemannian Manifolds by : Manuel Ritoré
Download or read book Isoperimetric Inequalities in Riemannian Manifolds written by Manuel Ritoré and published by Springer Nature. This book was released on 2023-10-06 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work gives a coherent introduction to isoperimetric inequalities in Riemannian manifolds, featuring many of the results obtained during the last 25 years and discussing different techniques in the area. Written in a clear and appealing style, the book includes sufficient introductory material, making it also accessible to graduate students. It will be of interest to researchers working on geometric inequalities either from a geometric or analytic point of view, but also to those interested in applying the described techniques to their field.
Book Synopsis Calculus of Variations I by : Mariano Giaquinta
Download or read book Calculus of Variations I written by Mariano Giaquinta and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume treatise is a standard reference in the field. It pays special attention to the historical aspects and the origins partly in applied problems—such as those of geometric optics—of parts of the theory. It contains an introduction to each chapter, section, and subsection and an overview of the relevant literature in the footnotes and bibliography. It also includes an index of the examples used throughout the book.
Book Synopsis Recent Trends in Lorentzian Geometry by : Miguel Sánchez
Download or read book Recent Trends in Lorentzian Geometry written by Miguel Sánchez and published by Springer Science & Business Media. This book was released on 2012-11-06 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditionally, Lorentzian geometry has been used as a necessary tool to understand general relativity, as well as to explore new genuine geometric behaviors, far from classical Riemannian techniques. Recent progress has attracted a renewed interest in this theory for many researchers: long-standing global open problems have been solved, outstanding Lorentzian spaces and groups have been classified, new applications to mathematical relativity and high energy physics have been found, and further connections with other geometries have been developed. Samples of these fresh trends are presented in this volume, based on contributions from the VI International Meeting on Lorentzian Geometry, held at the University of Granada, Spain, in September, 2011. Topics such as geodesics, maximal, trapped and constant mean curvature submanifolds, classifications of manifolds with relevant symmetries, relations between Lorentzian and Finslerian geometries, and applications to mathematical physics are included. This book will be suitable for a broad audience of differential geometers, mathematical physicists and relativists, and researchers in the field.