Holomorphic Curves in Symplectic Geometry

Download Holomorphic Curves in Symplectic Geometry PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034885083
Total Pages : 333 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Holomorphic Curves in Symplectic Geometry by : Michele Audin

Download or read book Holomorphic Curves in Symplectic Geometry written by Michele Audin and published by Birkhäuser. This book was released on 2012-12-06 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to pseudo-holomorphic curve methods in symplectic geometry. It contains an introduction to symplectic geometry and relevant techniques of Riemannian geometry, proofs of Gromov's compactness theorem, an investigation of local properties of holomorphic curves, including positivity of intersections, and applications to Lagrangian embeddings problems. The chapters are based on a series of lectures given previously by the authors M. Audin, A. Banyaga, P. Gauduchon, F. Labourie, J. Lafontaine, F. Lalonde, Gang Liu, D. McDuff, M.-P. Muller, P. Pansu, L. Polterovich, J.C. Sikorav. In an attempt to make this book accessible also to graduate students, the authors provide the necessary examples and techniques needed to understand the applications of the theory. The exposition is essentially self-contained and includes numerous exercises.

Holomorphic Curves in Low Dimensions

Download Holomorphic Curves in Low Dimensions PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319913719
Total Pages : 303 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Holomorphic Curves in Low Dimensions by : Chris Wendl

Download or read book Holomorphic Curves in Low Dimensions written by Chris Wendl and published by Springer. This book was released on 2018-06-28 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019

J-holomorphic Curves and Symplectic Topology

Download J-holomorphic Curves and Symplectic Topology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821887467
Total Pages : 744 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis J-holomorphic Curves and Symplectic Topology by : Dusa McDuff

Download or read book J-holomorphic Curves and Symplectic Topology written by Dusa McDuff and published by American Mathematical Soc.. This book was released on 2012 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of this book is to establish the fundamental theorems of the subject in full and rigourous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associatively of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology.

$J$-Holomorphic Curves and Quantum Cohomology

Download $J$-Holomorphic Curves and Quantum Cohomology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821803328
Total Pages : 220 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis $J$-Holomorphic Curves and Quantum Cohomology by : Dusa McDuff

Download or read book $J$-Holomorphic Curves and Quantum Cohomology written by Dusa McDuff and published by American Mathematical Soc.. This book was released on 1994 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: J -holomorphic curves revolutionized the study of symplectic geometry when Gromov first introduced them in 1985. Through quantum cohomology, these curves are now linked to many of the most exciting new ideas in mathematical physics. This book presents the first coherent and full account of the theory of J -holomorphic curves, the details of which are presently scattered in various research papers. The first half of the book is an expository account of the field, explaining the main technical aspects. McDuff and Salamon give complete proofs of Gromov's compactness theorem for spheres and of the existence of the Gromov-Witten invariants. The second half of the book focuses on the definition of quantum cohomology. The authors establish that the quantum multiplication exists and is associative on appropriate manifolds. They then describe the Givental-Kim calculation of the quantum cohomology of flag manifolds, leading to quantum Chern classes and Witten's calculation for Grassmanians, which relates to the Verlinde algebra. The Dubrovin connection, Gromov-Witten potential on quantum cohomology, and curve counting formulas are also discussed.

The Restricted Three-Body Problem and Holomorphic Curves

Download The Restricted Three-Body Problem and Holomorphic Curves PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319722786
Total Pages : 381 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis The Restricted Three-Body Problem and Holomorphic Curves by : Urs Frauenfelder

Download or read book The Restricted Three-Body Problem and Holomorphic Curves written by Urs Frauenfelder and published by Springer. This book was released on 2018-08-29 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves as an introduction to holomorphic curves in symplectic manifolds, focusing on the case of four-dimensional symplectizations and symplectic cobordisms, and their applications to celestial mechanics. The authors study the restricted three-body problem using recent techniques coming from the theory of pseudo-holomorphic curves. The book starts with an introduction to relevant topics in symplectic topology and Hamiltonian dynamics before introducing some well-known systems from celestial mechanics, such as the Kepler problem and the restricted three-body problem. After an overview of different regularizations of these systems, the book continues with a discussion of periodic orbits and global surfaces of section for these and more general systems. The second half of the book is primarily dedicated to developing the theory of holomorphic curves - specifically the theory of fast finite energy planes - to elucidate the proofs of the existence results for global surfaces of section stated earlier. The book closes with a chapter summarizing the results of some numerical experiments related to finding periodic orbits and global surfaces of sections in the restricted three-body problem. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019

Gromov’s Compactness Theorem for Pseudo-holomorphic Curves

Download Gromov’s Compactness Theorem for Pseudo-holomorphic Curves PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034889526
Total Pages : 136 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Gromov’s Compactness Theorem for Pseudo-holomorphic Curves by : Christoph Hummel

Download or read book Gromov’s Compactness Theorem for Pseudo-holomorphic Curves written by Christoph Hummel and published by Birkhäuser. This book was released on 2012-12-06 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the original proof of Gromov's compactness theorem for pseudo-holomorphic curves in detail. Local properties of pseudo-holomorphic curves are investigated and proved from a geometric viewpoint. Properties of particular interest are isoperimetric inequalities, a monotonicity formula, gradient bounds and the removal of singularities.

Holomorphic Curves and Global Questions in Contact Geometry

Download Holomorphic Curves and Global Questions in Contact Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030118037
Total Pages : 328 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Holomorphic Curves and Global Questions in Contact Geometry by : Casim Abbas

Download or read book Holomorphic Curves and Global Questions in Contact Geometry written by Casim Abbas and published by Springer. This book was released on 2019-03-29 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the foundations of holomorphic curve theory in contact geometry. By using a particular geometric problem as a starting point the authors guide the reader into the subject. As such it ideally serves as preparation and as entry point for a deeper study of the analysis underlying symplectic field theory. An introductory chapter sets the stage explaining some of the basic notions of contact geometry and the role of holomorphic curves in the field. The authors proceed to the heart of the material providing a detailed exposition about finite energy planes and periodic orbits (chapter 4) to disk filling methods and applications (chapter 9). The material is self-contained. It includes a number of technical appendices giving the geometric analysis foundations for the main results, so that one may easily follow the discussion. Graduate students as well as researchers who want to learn the basics of this fast developing theory will highly appreciate this accessible approach taken by the authors.

Lectures on Symplectic Geometry

Download Lectures on Symplectic Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 354045330X
Total Pages : 240 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Symplectic Geometry by : Ana Cannas da Silva

Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Symplectic Geometry and Topology

Download Symplectic Geometry and Topology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821886892
Total Pages : 452 pages
Book Rating : 4.8/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Symplectic Geometry and Topology by : Yakov Eliashberg

Download or read book Symplectic Geometry and Topology written by Yakov Eliashberg and published by American Mathematical Soc.. This book was released on 2004 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry has its origins as a geometric language for classical mechanics. But it has recently exploded into an independent field interconnected with many other areas of mathematics and physics. The goal of the IAS/Park City Mathematics Institute Graduate Summer School on Symplectic Geometry and Topology was to give an intensive introduction to these exciting areas of current research. Included in this proceedings are lecture notes from the following courses: Introductionto Symplectic Topology by D. McDuff; Holomorphic Curves and Dynamics in Dimension Three by H. Hofer; An Introduction to the Seiberg-Witten Equations on Symplectic Manifolds by C. Taubes; Lectures on Floer Homology by D. Salamon; A Tutorial on Quantum Cohomology by A. Givental; Euler Characteristicsand Lagrangian Intersections by R. MacPherson; Hamiltonian Group Actions and Symplectic Reduction by L. Jeffrey; and Mechanics: Symmetry and Dynamics by J. Marsden. Information for our distributors: Titles in this series are copublished with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

Lectures on Contact 3-Manifolds, Holomorphic Curves and Intersection Theory

Download Lectures on Contact 3-Manifolds, Holomorphic Curves and Intersection Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108759580
Total Pages : 198 pages
Book Rating : 4.1/5 (87 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Contact 3-Manifolds, Holomorphic Curves and Intersection Theory by : Chris Wendl

Download or read book Lectures on Contact 3-Manifolds, Holomorphic Curves and Intersection Theory written by Chris Wendl and published by Cambridge University Press. This book was released on 2020-03-26 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intersection theory has played a prominent role in the study of closed symplectic 4-manifolds since Gromov's famous 1985 paper on pseudoholomorphic curves, leading to myriad beautiful rigidity results that are either inaccessible or not true in higher dimensions. Siefring's recent extension of the theory to punctured holomorphic curves allowed similarly important results for contact 3-manifolds and their symplectic fillings. Based on a series of lectures for graduate students in topology, this book begins with an overview of the closed case, and then proceeds to explain the essentials of Siefring's intersection theory and how to use it, and gives some sample applications in low-dimensional symplectic and contact topology. The appendices provide valuable information for researchers, including a concise reference guide on Siefring's theory and a self-contained proof of a weak version of the Micallef–White theorem.

An Introduction to Symplectic Geometry

Download An Introduction to Symplectic Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821820568
Total Pages : 226 pages
Book Rating : 4.8/5 (25 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Symplectic Geometry by : Rolf Berndt

Download or read book An Introduction to Symplectic Geometry written by Rolf Berndt and published by American Mathematical Soc.. This book was released on 2001 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.

The Geometry of the Group of Symplectic Diffeomorphism

Download The Geometry of the Group of Symplectic Diffeomorphism PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034882998
Total Pages : 138 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of the Group of Symplectic Diffeomorphism by : Leonid Polterovich

Download or read book The Geometry of the Group of Symplectic Diffeomorphism written by Leonid Polterovich and published by Birkhäuser. This book was released on 2012-12-06 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: The group of Hamiltonian diffeomorphisms Ham(M, 0) of a symplectic mani fold (M, 0) plays a fundamental role both in geometry and classical mechanics. For a geometer, at least under some assumptions on the manifold M, this is just the connected component of the identity in the group of all symplectic diffeomorphisms. From the viewpoint of mechanics, Ham(M,O) is the group of all admissible motions. What is the minimal amount of energy required in order to generate a given Hamiltonian diffeomorphism I? An attempt to formalize and answer this natural question has led H. Hofer [HI] (1990) to a remarkable discovery. It turns out that the solution of this variational problem can be interpreted as a geometric quantity, namely as the distance between I and the identity transformation. Moreover this distance is associated to a canonical biinvariant metric on Ham(M, 0). Since Hofer's work this new ge ometry has been intensively studied in the framework of modern symplectic topology. In the present book I will describe some of these developments. Hofer's geometry enables us to study various notions and problems which come from the familiar finite dimensional geometry in the context of the group of Hamiltonian diffeomorphisms. They turn out to be very different from the usual circle of problems considered in symplectic topology and thus extend significantly our vision of the symplectic world.

Contact and Symplectic Topology

Download Contact and Symplectic Topology PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3319020366
Total Pages : 538 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Contact and Symplectic Topology by : Frédéric Bourgeois

Download or read book Contact and Symplectic Topology written by Frédéric Bourgeois and published by Springer Science & Business Media. This book was released on 2014-03-10 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.

Introduction to Symplectic Topology

Download Introduction to Symplectic Topology PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0198794894
Total Pages : 637 pages
Book Rating : 4.1/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Symplectic Topology by : Dusa McDuff

Download or read book Introduction to Symplectic Topology written by Dusa McDuff and published by Oxford University Press. This book was released on 2017 with total page 637 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. This new third edition of a classic book in the feild includes updates and new material to bring the material right up-to-date.

Virtual Fundamental Cycles in Symplectic Topology

Download Virtual Fundamental Cycles in Symplectic Topology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470450143
Total Pages : 317 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Virtual Fundamental Cycles in Symplectic Topology by : John W. Morgan

Download or read book Virtual Fundamental Cycles in Symplectic Topology written by John W. Morgan and published by American Mathematical Soc.. This book was released on 2019-04-12 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The method of using the moduli space of pseudo-holomorphic curves on a symplectic manifold was introduced by Mikhail Gromov in 1985. From the appearance of Gromov's original paper until today this approach has been the most important tool in global symplectic geometry. To produce numerical invariants of these manifolds using this method requires constructing a fundamental cycle associated with moduli spaces. This volume brings together three approaches to constructing the “virtual” fundamental cycle for the moduli space of pseudo-holomorphic curves. All approaches are based on the idea of local Kuranishi charts for the moduli space. Workers in the field will get a comprehensive understanding of the details of these constructions and the assumptions under which they can be made. These techniques and results will be essential in further applications of this approach to producing invariants of symplectic manifolds.

Function Theory on Symplectic Manifolds

Download Function Theory on Symplectic Manifolds PDF Online Free

Author :
Publisher :
ISBN 13 : 9781470419318
Total Pages : 203 pages
Book Rating : 4.4/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Function Theory on Symplectic Manifolds by : Leonid Polterovich

Download or read book Function Theory on Symplectic Manifolds written by Leonid Polterovich and published by . This book was released on 2014 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cover -- Title page -- Contents -- Preface -- Three wonders of symplectic geometry -- 0-rigidity of the Poisson bracket -- Quasi-morphisms -- Subadditive spectral invariants -- Symplectic quasi-states and quasi-measures -- Applications of partial symplectic quasi-states -- A Poisson bracket invariant of quadruples -- Symplectic approximation theory -- Geometry of covers and quantum noise -- Preliminaries from Morse theory -- An overview of Floer theory -- Constructing subadditive spectral invariants -- Bibliography -- Nomenclature -- Subject index -- Name index -- Back Cover

From Stein to Weinstein and Back

Download From Stein to Weinstein and Back PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821885332
Total Pages : 379 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis From Stein to Weinstein and Back by : Kai Cieliebak

Download or read book From Stein to Weinstein and Back written by Kai Cieliebak and published by American Mathematical Soc.. This book was released on 2012 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the interplay between complex and symplectic geometry in affine complex manifolds. Affine complex (a.k.a. Stein) manifolds have canonically built into them symplectic geometry which is responsible for many phenomena in complex geometry and analysis. The goal of the book is the exploration of this symplectic geometry (the road from 'Stein to Weinstein') and its applications in the complex geometric world of Stein manifolds (the road 'back').