Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
History Of The Society Of Nuclear Medicine And Molecular Imaging
Download History Of The Society Of Nuclear Medicine And Molecular Imaging full books in PDF, epub, and Kindle. Read online History Of The Society Of Nuclear Medicine And Molecular Imaging ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis A History of Radionuclide Studies in the UK by : Ralph McCready
Download or read book A History of Radionuclide Studies in the UK written by Ralph McCready and published by Springer. This book was released on 2016-03-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The British Nuclear Medicine Society celebrates its 50th Anniversary with this booklet, which reflects the research of many of the pioneers in the use of radionuclides for the diagnosis and therapy of human disease. Since 1949 there have been remarkable advances in radionuclide techniques and imaging equipment: from the first devices “home-made” in the many physics departments throughout the UK, to the sophisticated multimodality imagers now in everyday use in Nuclear Medicine. The BNMS has been instrumental in promoting the use of radionuclide techniques in the investigation of pathology by supporting and providing education, research and guidelines on the optimum use of radiation to help patients. The future of Nuclear Medicine is bright, thanks to improved imaging resolution, new radiopharmaceuticals, and new diagnostic and therapeutic techniques and procedures.
Book Synopsis Advancing Nuclear Medicine Through Innovation by : National Research Council
Download or read book Advancing Nuclear Medicine Through Innovation written by National Research Council and published by National Academies Press. This book was released on 2007-09-11 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nearly 20 million nuclear medicine procedures are carried out each year in the United States alone to diagnose and treat cancers, cardiovascular disease, and certain neurological disorders. Many of the advancements in nuclear medicine have been the result of research investments made during the past 50 years where these procedures are now a routine part of clinical care. Although nuclear medicine plays an important role in biomedical research and disease management, its promise is only beginning to be realized. Advancing Nuclear Medicine Through Innovation highlights the exciting emerging opportunities in nuclear medicine, which include assessing the efficacy of new drugs in development, individualizing treatment to the patient, and understanding the biology of human diseases. Health care and pharmaceutical professionals will be most interested in this book's examination of the challenges the field faces and its recommendations for ways to reduce these impediments.
Book Synopsis A Personal History of Nuclear Medicine by : Henry N. Wagner
Download or read book A Personal History of Nuclear Medicine written by Henry N. Wagner and published by Springer Science & Business Media. This book was released on 2007-12-23 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Personal History of Nuclear Medicine is an account of how nuclear medicine developed, and its basic philosophy in the past, present and future. The book outlines the history of the development of nuclear medicine as experienced by the author and describes the hurdles that nuclear medicine has had to face, in view of the perception of risk of radiation. It also explains how nuclear medicine solves medical problems in clinical practice and how it has contributed to a new definition of disease. The book concludes with future projections of the likely developments in this area in the next 50 years. Target market: nuclear medicine professionals as well non-nuclear medicine physicians and the public
Book Synopsis Nuclear Cardiac Imaging by : Ami E. Iskandrian
Download or read book Nuclear Cardiac Imaging written by Ami E. Iskandrian and published by Oxford University Press. This book was released on 2008-09-25 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nuclear cardiac imaging is the diagnostic technique of using radiology and chemical markers to track cardiac performance. These imaging studies provide a wide range of information about the heart, including how much the heart contracts, the amount of blood supply to the heart and whether parts of the heart muscle are alive or dead. This is essential information for cardiologists, and nuclear imaging has become an increasingly important part of the cardiologist's armoury of diagnostic techniques. Iskandrian's text has become a leading book in the field and the fourth edition will continue the tradition. The text is updated throughout to reflect the many advances in the field, and, as a new feature, each chapter concludes with a question and answer session on important and difficult clinical issues.
Author :Shankar Vallabhajosula Publisher :Springer Science & Business Media ISBN 13 :3540767355 Total Pages :379 pages Book Rating :4.5/5 (47 download)
Book Synopsis Molecular Imaging by : Shankar Vallabhajosula
Download or read book Molecular Imaging written by Shankar Vallabhajosula and published by Springer Science & Business Media. This book was released on 2009-07-13 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radioisotope-based molecular imaging probes provide unprecedented insight into biochemistry and function involved in both normal and disease states of living systems, with unbiased in vivo measurement of regional radiotracer activities offering very high specificity and sensitivity. No other molecular imaging technology including functional magnetic resonance imaging (fMRI) can provide such high sensitivity and specificity at a tracer level. The applications of this technology can be very broad ranging from drug development, pharmacokinetics, clinical investigations, and finally to routine diagnostics in radiology. The design and the development of radiopharmaceuticals for molecular imaging studies using PET/MicroPET or SPECT/MicroSPECT are a unique challenge. This book is intended for a broad audience and written with the main purpose of educating the reader on various aspects including potential clinical utility, limitations of drug development, and regulatory compliance and approvals.
Book Synopsis Handbook of Nuclear Medicine and Molecular Imaging for Physicists by : Michael Ljungberg
Download or read book Handbook of Nuclear Medicine and Molecular Imaging for Physicists written by Michael Ljungberg and published by CRC Press. This book was released on 2022-01-24 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: This state-of-the-art handbook, the first in a series that provides medical physicists with a comprehensive overview into the field of nuclear medicine, is dedicated to instrumentation and imaging procedures in nuclear medicine. It provides a thorough treatment on the cutting-edge technologies being used within the field, in addition to touching upon the history of their use, their development, and looking ahead to future prospects. This text will be an invaluable resource for libraries, institutions, and clinical and academic medical physicists searching for a complete account of what defines nuclear medicine. The most comprehensive reference available providing a state-of-the-art overview of the field of nuclear medicine Edited by a leader in the field, with contributions from a team of experienced medical physicists Includes the latest practical research in the field, in addition to explaining fundamental theory and the field's history
Book Synopsis Life Atomic by : Angela N. H. Creager
Download or read book Life Atomic written by Angela N. H. Creager and published by University of Chicago Press. This book was released on 2013-10-02 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: After World War II, the US Atomic Energy Commission (AEC) began mass-producing radioisotopes, sending out nearly 64,000 shipments of radioactive materials to scientists and physicians by 1955. Even as the atomic bomb became the focus of Cold War anxiety, radioisotopes represented the government’s efforts to harness the power of the atom for peace—advancing medicine, domestic energy, and foreign relations. In Life Atomic, Angela N. H. Creager tells the story of how these radioisotopes, which were simultaneously scientific tools and political icons, transformed biomedicine and ecology. Government-produced radioisotopes provided physicians with new tools for diagnosis and therapy, specifically cancer therapy, and enabled biologists to trace molecular transformations. Yet the government’s attempt to present radioisotopes as marvelous dividends of the atomic age was undercut in the 1950s by the fallout debates, as scientists and citizens recognized the hazards of low-level radiation. Creager reveals that growing consciousness of the danger of radioactivity did not reduce the demand for radioisotopes at hospitals and laboratories, but it did change their popular representation from a therapeutic agent to an environmental poison. She then demonstrates how, by the late twentieth century, public fear of radioactivity overshadowed any appreciation of the positive consequences of the AEC’s provision of radioisotopes for research and medicine.
Book Synopsis The History of Radiology by : Adrian M. K. Thomas
Download or read book The History of Radiology written by Adrian M. K. Thomas and published by OUP Oxford. This book was released on 2013-05-09 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1890, Professor Arthur Willis Goodspeed, a professor of physics at Pennsylvania USA was working with an English born photographer, William N Jennings, when they accidentally produced a Röntgen Ray picture. Unfortunately, the significance of their findings were overlooked, and the formal discovery of X-rays was credited to Wilhelm Roentgen in 1895. The discovery has since transformed the practice of medicine, and over the course of the past 130 years, the development of new radiological techniques has continued to grow. The impact has been seen in virtually every hospital in the world, from the routine use of ultrasound for pregnancy scans, through to the diagnosis of complex medical issues such as brain tumours. More subtly, X-rays were also used in the discovery of DNA and in military combat, and their social influence through popular culture can be seen in cartoons, books, movies and art. Written by two radiologists who have a passion for the history of their field, The History of Radiology is a beautifully illustrated review of the remarkable developments within radiology and the scientists and pioneers who were involved. This engaging and authoritative history will appeal to a wide audience including medical students studying for the Diploma in the History of Medicine of the Society of Apothecaries (DHMSA), doctors, medical physicists, medical historians and radiographers.
Book Synopsis Nuclear Medicine Textbook by : Duccio Volterrani
Download or read book Nuclear Medicine Textbook written by Duccio Volterrani and published by Springer. This book was released on 2019-08-10 with total page 1331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the traditional concept of nuclear medicine, this textbook presents cutting-edge concepts of hybrid imaging and discusses the close interactions between nuclear medicine and other clinical specialties, in order to achieve the best possible outcomes for patients. Today the diagnostic applications of nuclear medicine are no longer stand-alone procedures, separate from other diagnostic imaging modalities. This is especially true for hybrid imaging guided interventional radiology or surgical procedures. Accordingly, today’s nuclear medicine specialists are actually specialists in multimodality imaging (in addition to their expertise in the diagnostic and therapeutic uses of radionuclides). This new role requires a new core curriculum for training nuclear medicine specialists. This textbook is designed to meet these new educational needs, and to prepare nuclear physicians and technologists for careers in this exciting specialty.
Book Synopsis Radioluminescence by : Jan Lindström
Download or read book Radioluminescence written by Jan Lindström and published by Linköping University Electronic Press. This book was released on 2021-03-24 with total page 61 pages. Available in PDF, EPUB and Kindle. Book excerpt: A phosphor or scintillator is a material that will emit visible light when struck by ionising radiation. In the early days of diagnostic radiology, it was discovered that the radiation dose needed to get an image on a film, could be greatly reduced by inserting a fluorescent layer of a phosphor in direct contact with the film. Thus, introducing the step of converting the ionising radiation to light in a first step. Going forward in time, film has been replaced with photodetectors and there is now a variety of imaging x-ray systems, still based on phosphors and scintillators. There is continuous research going on to optimise between the radiation dose needed and a sufficient image quality. These factors tend to be in opposition to each other. It is a complicated task to optimise these imaging system and new phosphor materials emerges regularly. One of the key factors is the efficiency of the conversion from xrays to light. In this work this is denoted “extrinsic efficiency”. It is important since it largely determines the final dose to the patient needed for the imaging task. Most imaging x-ray detectors are based on phosphor or scintillator types where their imaging performance has been improved through tweaking of various parameters (light guide structure, higher density, light emission spectrum matching to photodetectors, delayed fluorescence quenching etc) One key factor that largely determines the extrinsic efficiency of a specific phosphor is the particle size. Larger particles result in a higher luminance of the phosphor for the same radiation dose as does as a thicker phosphor layer (to a limit). There exists already a battery of models describing various phosphor qualities. However, particle size and thickness have not been treated as a fully independent variables in previous model works. Indirectly, the influence of these parameters is accounted for, but the existing models were either considered too general, containing several complex parameters and factors to cover all kind of cases or too highly specialised to be easily applicable to fluorescent detectors in diagnostic radiology. The aim of this thesis is therefore to describe and assess a simple model denoted the “LAC-model” (after the original authors Lindström and Alm Carlsson), developed for a fluorescent layer using individual sub-layers defined by the particle size diameter. The model is thought to be a tool for quickly evaluating various particle size and fluorescent layer thickness combinations for a chosen phosphor and design. It may also serve as a more intuitive description of the underlying parameters influencing the final extrinsic efficiency. Further tests affirmed the validity of the model through measurements. The LACmodel produced results deviating a maximum of +5 % from luminescence measurements. During the development of the model various assumptions and simplifications were made. One assumption was the absence of a so called “dead layer”. This is a layer supposedly surrounding each particle decreasing the efficiency of converting x-rays to light. It is not completely “dead” as in inactive but is thought to have a reduced efficiency. This phenomenon was struggled with, when historically designing electron beam stimulated phosphors for various applications (i.e. displays, TV tubes etc). There are also articles reporting dead layer influence for x-ray detectors (usually spectrometers i.e. not for imaging). By introducing a dead layer in the LAC-model the effect of the layer was investigated and was found to result in a change of less than 8% for the extrinsic efficiency. It was also noted that sometimes a dead layer effect may emerge at surfaces of a scintillator slab but not necessarily connected to the phosphor particles themselves. Due to differences between phosphor material and the surroundings, an interface effect arose to compete with the process of inherent dead layers of the individual particles. It was found to be mostly negligible for x-rays in the studied energy and material range. However, an effect was shown for electrons as incident ionising radiation which could shed some light on the strangely neglected apparent dead layer created this way. Finally, applications, one involving developing a prototype for checking the light field radiation field coincidence, were evaluated for overall performance and the optimisation level of the applied fluorescent layer. Interesting findings were made during the development process: for the first time to the knowledge of the author, focus shift wandering was quantified in the corresponding movement of the x-ray field edge and a non-trivial discussion on the concept of an apparent light field edge resulted in a modified definition of the same. En fosfor eller scintillator är ett material som avger synligt ljus när det träffas av joniserande strålning. Inom diagnostisk radiologi upptäckte man i ett tidigt skede att stråldosen som behövdes för att få en bild på en röntgenfilm, reducerades kraftigt om man placerade ett fluorescerande skikt, en fosfor, i direkt kontakt med filmen. I nutid har film ersatts med fotodetektorer och det finns nu en mängd olika röntgenbildsystem men som fortfarande är baserade på fosforer och scintillatorer. Det pågår en kontinuerlig forskning för att optimera mellan erforderlig stråldos och en tillräcklig god diagnostisk bildkvalitet. Dessa faktorer tenderar att motverka varandra. Det är en komplicerad uppgift att optimera röntgenbildsystemen och nya fosformaterial dyker ständigt upp. En av de viktiga egenskaperna är fosforns omvandlingseffektivitet från röntgen till ljus. I detta arbete används benämningen ”extrinsisk (yttre) effektivitet". Denna egenskap är viktig eftersom den i stor utsträckning bestämmer den slutliga dosen till patienten som krävs för bilddiagnostiken. De flesta röntgendetektorer är baserade på fosfor- eller scintillatortyper där bildprestanda har förbättrats genom att utveckla olika parametrar (ljusledarstruktur, högre densitet, ljusemissionsspektrum som matchar fotodetektorer, minskad efterlysning etc.). En viktig faktor som i stor utsträckning bestämmer omvandlingseffektiviteten hos en specifik fosfor är partikelstorleken. Större partiklar resulterar i en högre luminescens (mer ljus) från fosforen för samma stråldos. Vilket också gäller för ett tjockare fosforlager (till en viss gräns!). Det finns redan fysikaliska modeller som beskriver olika fosforparametrar men partikelstorlek och fosfortjocklek har dock inte hanterats som fristående variabler i dessa modellarbeten. Istället har deras inverkan modellerats indirekt men det har gjort att de befintliga modellerna kan anses komplexa. De är antingen för generella som medför flera komplexa parametrar och faktorer för att täcka alla tänkbara varianter eller för specialiserade för att kunna tillämpas enkelt på fluorescerande detektorer i diagnostisk radiologi. Syftet med denna avhandling är därför att beskriva och analysera en praktisk modell betecknad ”LAC-modellen” (efter de ursprungliga författarna Lindström och Alm Carlsson). Den är utvecklad för ett fluorescerande block som består av flera underliggande skikt vars tjocklek bestäms av partiklarnas diameter. Avsikten med modellen är att den ska vara ett verktyg för att snabbt utvärdera olika varianter av partikelstorlek och tjockleks-kombinationer för en vald fosfor med i grunden samma design. Experiment har bekräftat modellens giltighet och mätresultat visar att modellresultaten avvek maximalt +5% från luminiscensmätningar. Utvecklingen av modellen krävde olika antaganden och förenklingar. Ett antagande var frånvaron av ett så kallat ”dött lager”. Det är ett skikt som antas omge varje partikel och som därför minskar omvandlingseffektiviteten från röntgen till ljus. Det är dock inte helt "dött" i meningen helt inaktivt men har en mindre förmåga att omvandla röntgen till ljus jämfört med fosforns huvudmaterial. Historisk sett har man försökt åtgärda detta fenomen under lång tid och speciellt för applikationer där man använt sig av elektronstrålar (dvs olika typer av displayer, TV-rör etc.). Just för elektroner har man sett att döda skiktet tenderar att växa med tiden. Det finns också artiklar som rapporterar en påverkan av röntgendetektorers funktion (vanligtvis dock för spektrometrar, dvs inte för avbildning). Genom att införa ett dött skikt i LAC-modellen undersöktes skiktets effekt och visade sig resultera i en förändring på mindre än 8% för effektiviteten. Det noterades också att ibland kan en dödskiktsliknande effekt uppstå vid ytor av ett scintillatorblock men inte nödvändigtvis pga. av själva fosforpartiklarnas ljusomvandlingsegenskaper. Då det uppstår skillnader mellan fosformaterialet och omgivningen får man en s.k. gränsskiktseffekt som s.a.s. konkurrerar med kemiskt döda skiktet på de enskilda partiklarna. De döda skiktens inverkan visade sig i princip försumbara för röntgenbild-detektorer - åtminstone inom det studerade energi- och materialområdet. En tydlig effekt kunde dock noteras för joniserande strålning i form av elektroner. Simuleringarna kunde ge en bättre bild av egenskaperna hos det döda skiktet som skapats på detta sätt. Slutligen utvärderades två applikationer med hjälp av LAC-modellen: en prototyp för kontroll av ljusfältets och strålfältets överenstämmelse i läge och position. Samt en etablerad produkt med samma användningsområde. I båda fallen undersöktes det fluorescerande skiktets optimeringsgrad. Intressanta resultat noterades under utvecklingsprocessen av prototypen: för första gången, så vitt författaren vet, kunde man kvantifiera röntgenrörs s.k. fokusvandring.
Book Synopsis Practical Mathematics in Nuclear Medicine Technology by : Patricia Wells
Download or read book Practical Mathematics in Nuclear Medicine Technology written by Patricia Wells and published by Society of Nuclear Medicine, Incorporated. This book was released on 2011 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Simplifies the mathematics that technologists and students are likely to encounter in the practice of clinical nuclear medicine technology"--Provided by publisher.
Book Synopsis Nuclear Medicine: The Requisites by : Harvey A. Ziessman, MD
Download or read book Nuclear Medicine: The Requisites written by Harvey A. Ziessman, MD and published by Elsevier Health Sciences. This book was released on 2013-03-21 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get the essential tools you need to make an accurate diagnosis with Nuclear Medicine: The Requisites! The newest edition of his bestselling volume by Drs. Harvey Ziessman, Janis O'Malley, and James Thrall delivers the conceptual, factual, and interpretive information you need for effective clinical practice in nuclear medicine imaging, as well as for certification and recertification review. Prepare for the written board exam and for clinical practice with critical information on nuclear medicine physics, detection and instrumentation, SPECT and PET imaging, and clinical nuclear medicine imaging. Get the best results from today's most technologically advanced approaches, including hybrid imaging, PET/CT, and SPECT/CT, as well as recent developments in instrumentation, radiopharmaceuticals, and molecular imaging. Clearly visualize the findings you're likely to see in practice and on exams with nearly 200 vibrant new full-color images. Access the fully searchable text and downloadable images online at www.expertconsult.com.
Book Synopsis Radiopharmaceutical Chemistry by : Jason S. Lewis
Download or read book Radiopharmaceutical Chemistry written by Jason S. Lewis and published by Springer. This book was released on 2019-04-02 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive guide to radiopharmaceutical chemistry. The stunning clinical successes of nuclear imaging and targeted radiotherapy have resulted in rapid growth in the field of radiopharmaceutical chemistry, an essential component of nuclear medicine and radiology. However, at this point, interest in the field outpaces the academic and educational infrastructure needed to train radiopharmaceutical chemists. For example, the vast majority of texts that address radiopharmaceutical chemistry do so only peripherally, focusing instead on nuclear chemistry (i.e. nuclear reactions in reactors), heavy element radiochemistry (i.e. the decomposition of radioactive waste), or solely on the clinical applications of radiopharmaceuticals (e.g. the use of PET tracers in oncology). This text fills that gap by focusing on the chemistry of radiopharmaceuticals, with key coverage of how that knowledge translates to the development of diagnostic and therapeutic radiopharmaceuticals for the clinic. The text is divided into three overarching sections: First Principles, Radiochemistry, and Special Topics. The first is a general overview covering fundamental and broad issues like “The Production of Radionuclides” and “Basics of Radiochemistry”. The second section is the main focus of the book. In this section, each chapter’s author will delve much deeper into the subject matter, covering both well established and state-of-the-art techniques in radiopharmaceutical chemistry. This section will be divided according to radionuclide and will include chapters on radiolabeling methods using all of the common nuclides employed in radiopharmaceuticals, including four chapters on the ubiquitously used fluorine-18 and a “Best of the Rest” chapter to cover emerging radionuclides. Finally, the third section of the book is dedicated to special topics with important information for radiochemists, including “Bioconjugation Methods,” “Click Chemistry in Radiochemistry”, and “Radiochemical Instrumentation.” This is an ideal educational guide for nuclear medicine physicians, radiologists, and radiopharmaceutical chemists, as well as residents and trainees in all of these areas.
Download or read book Marie Curie written by Naomi Pasachoff and published by Oxford University Press. This book was released on 1996-08-01 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: Marie Curie discovered radium and went on to lead the scientific community in studying the theory behind and the uses of radioactivity. She left a vast legacy to future scientists through her research, her teaching, and her contributions to the welfare of humankind. She was the first person to win two Nobel Prizes, yet upon her death in 1934, Albert Einstein was moved to say, "Marie Curie is, of all celebrated beings, the only one whom fame has not corrupted." She was a physicist, a wife and mother, and a groundbreaking professional woman. This biography is an inspirational and exciting story of scientific discovery and personal commitment. Oxford Portraits in Science is an on-going series of scientific biographies for young adults. Written by top scholars and writers, each biography examines the personality of its subject as well as the thought process leading to his or her discoveries. These illustrated biographies combine accessible technical information with compelling personal stories to portray the scientists whose work has shaped our understanding of the natural world.
Book Synopsis Nuclear Medicine Physics by : Joao Jose De Lima
Download or read book Nuclear Medicine Physics written by Joao Jose De Lima and published by CRC Press. This book was released on 2016-04-19 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological
Author :Norman E. Bolus Publisher :Society of Nuclear Medicine, Incorporated ISBN 13 :9780932004871 Total Pages :372 pages Book Rating :4.0/5 (48 download)
Book Synopsis Steves' Review of Nuclear Medicine Technology by : Norman E. Bolus
Download or read book Steves' Review of Nuclear Medicine Technology written by Norman E. Bolus and published by Society of Nuclear Medicine, Incorporated. This book was released on 2011 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rev. ed. of: Review of nuclear medicine technology / Ann M. Steves, Patricia C. Wells. 3rd ed. c2004.
Download or read book PET/MR Imaging written by Rajesh Gupta and published by Springer. This book was released on 2017-12-02 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an overview of the clinical applications of PET/MR imaging through a case-based format. Hybrid PET/MRI provides functional and anatomical information via one setting offering superior imaging quality with lower radiation dose being administered to the patient. The cases in this book focus on the use of this technique in the diagnosis of oncologic, neurologic, cardiovascular, infectious and inflammatory, and pediatric diseases. Each case is presented with the patient history, protocols, interpretation of findings, and pearls and pitfalls accompanied by high quality PET/MR images. The major strength of this book is the discussion of both MRI and PET findings pertinent to each particular case. It expands the discussion of oncologic applications of this modality through a variety of cases that highlight staging, treatment response, and follow up. Illustrating a spectrum of PET/MRI clinical applications, PET/MR Imaging: A Case-Based Approach is a valuable resource for radiologists, nuclear medicine physicians, and residents.