Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Hilbert Modular Forms Mod P And P Adic Aspects
Download Hilbert Modular Forms Mod P And P Adic Aspects full books in PDF, epub, and Kindle. Read online Hilbert Modular Forms Mod P And P Adic Aspects ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Hilbert Modular Forms: mod $p$ and $p$-Adic Aspects by : Fabrizio Andreatta
Download or read book Hilbert Modular Forms: mod $p$ and $p$-Adic Aspects written by Fabrizio Andreatta and published by American Mathematical Soc.. This book was released on 2005 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: We study Hilbert modular forms in characteristic $p$ and over $p$-adic rings. In the characteristic $p$ theory we describe the kernel and image of the $q$-expansion map and prove the existence of filtration for Hilbert modular forms; we define operators $U$, $V$ and $\Theta_\chi$ and study the variation of the filtration under these operators. Our methods are geometric - comparing holomorphic Hilbert modular forms with rational functions on a moduli scheme with level-$p$ structure, whose poles are supported on the non-ordinary locus.In the $p$-adic theory we study congruences between Hilbert modular forms. This applies to the study of congruences between special values of zeta functions of totally real fields. It also allows us to define $p$-adic Hilbert modular forms 'a la Serre' as $p$-adic uniform limit of classical modular forms, and compare them with $p$-adic modular forms 'a la Katz' that are regular functions on a certain formal moduli scheme. We show that the two notions agree for cusp forms and for a suitable class of weights containing all the classical ones. We extend the operators $V$ and $\Theta_\chi$ to the $p$-adic setting.
Book Synopsis P-adic Aspects Of Modular Forms by : Baskar Balasubramanyam
Download or read book P-adic Aspects Of Modular Forms written by Baskar Balasubramanyam and published by World Scientific. This book was released on 2016-06-14 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to give a systematic exposition of results in some important cases where p-adic families and p-adic L-functions are studied. We first look at p-adic families in the following cases: general linear groups, symplectic groups and definite unitary groups. We also look at applications of this theory to modularity lifting problems. We finally consider p-adic L-functions for GL(2), the p-adic adjoint L-functions and some cases of higher GL(n).
Book Synopsis Hilbert Modular Forms and Iwasawa Theory by : Haruzo Hida
Download or read book Hilbert Modular Forms and Iwasawa Theory written by Haruzo Hida and published by Clarendon Press. This book was released on 2006-06-15 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 1995 work of Wiles and Taylor-Wiles opened up a whole new technique in algebraic number theory and, a decade on, the waves caused by this incredibly important work are still being felt. This book, authored by a leading researcher, describes the striking applications that have been found for this technique. In the book, the deformation theoretic techniques of Wiles-Taylor are first generalized to Hilbert modular forms (following Fujiwara's treatment), and some applications found by the author are then discussed. With many exercises and open questions given, this text is ideal for researchers and graduate students entering this research area.
Book Synopsis Geometric Aspects of Dwork Theory by : Alan Adolphson
Download or read book Geometric Aspects of Dwork Theory written by Alan Adolphson and published by Walter de Gruyter. This book was released on 2004 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Automorphic Forms and Related Geometry: Assessing the Legacy of I.I. Piatetski-Shapiro by : James W. Cogdell
Download or read book Automorphic Forms and Related Geometry: Assessing the Legacy of I.I. Piatetski-Shapiro written by James W. Cogdell and published by American Mathematical Soc.. This book was released on 2014-04-01 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the conference Automorphic Forms and Related Geometry: Assessing the Legacy of I.I. Piatetski-Shapiro, held from April 23-27, 2012, at Yale University, New Haven, CT. Ilya I. Piatetski-Shapiro, who passed away on 21 February 2009, was a leading figure in the theory of automorphic forms. The conference attempted both to summarize and consolidate the progress that was made during Piatetski-Shapiro's lifetime by him and a substantial group of his co-workers, and to promote future work by identifying fruitful directions of further investigation. It was organized around several themes that reflected Piatetski-Shapiro's main foci of work and that have promise for future development: functoriality and converse theorems; local and global -functions and their periods; -adic -functions and arithmetic geometry; complex geometry; and analytic number theory. In each area, there were talks to review the current state of affairs with special attention to Piatetski-Shapiro's contributions, and other talks to report on current work and to outline promising avenues for continued progress. The contents of this volume reflect most of the talks that were presented at the conference as well as a few additional contributions. They all represent various aspects of the legacy of Piatetski-Shapiro.
Book Synopsis Flat Level Set Regularity of $p$-Laplace Phase Transitions by : Enrico Valdinoci
Download or read book Flat Level Set Regularity of $p$-Laplace Phase Transitions written by Enrico Valdinoci and published by American Mathematical Soc.. This book was released on 2006 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: We prove a Harnack inequality for level sets of $p$-Laplace phase transition minimizers. In particular, if a level set is included in a flat cylinder, then, in the interior, it is included in a flatter one. The extension of a result conjectured by De Giorgi and recently proven by the third author for $p=2$ follows.
Book Synopsis The Calculus of One-Sided $M$-Ideals and Multipliers in Operator Spaces by : David P. Blecher
Download or read book The Calculus of One-Sided $M$-Ideals and Multipliers in Operator Spaces written by David P. Blecher and published by American Mathematical Soc.. This book was released on 2006 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of one-sided $M$-ideals and multipliers of operator spaces is simultaneously a generalization of classical $M$-ideals, ideals in operator algebras, and aspects of the theory of Hilbert $C*$-modules and their maps. Here we give a systematic exposition of this theory. The main part of this memoir consists of a 'calculus' for one-sided $M$-ideals and multipliers, i.e. a collection of the properties of one-sided $M$-ideals and multipliers with respect to the basic constructions met in functional analysis. This is intended to be a reference tool for 'noncommutative functional analysts' who may encounter a one-sided $M$-ideal or multiplier in their work.
Book Synopsis An Algebraic Structure for Moufang Quadrangles by : Tom de Medts
Download or read book An Algebraic Structure for Moufang Quadrangles written by Tom de Medts and published by American Mathematical Soc.. This book was released on 2005 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Features an article that intends to present a uniform algebraic structure for Moufang quadrangles, and to classify these structures without referring back to the original Moufang quadrangles from which they arise, thereby also giving a new proof for the classification of Moufang quadrangles, which does consist of the division into these 2 parts.
Book Synopsis Conformal and Harmonic Measures on Laminations Associated with Rational Maps by : Vadim A. Kaimanovich
Download or read book Conformal and Harmonic Measures on Laminations Associated with Rational Maps written by Vadim A. Kaimanovich and published by American Mathematical Soc.. This book was released on 2005 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to Dennis Sullivan on the occasion of his 60th birthday. The framework of affine and hyperbolic laminations provides a unifying foundation for many aspects of conformal dynamics and hyperbolic geometry. The central objects of this approach are an affine Riemann surface lamination $\mathcal A$ and the associated hyperbolic 3-lamination $\mathcal H$ endowed with an action of a discrete group of isomorphisms. This action is properly discontinuous on $\mathcal H$, which allows one to pass to the quotient hyperbolic lamination $\mathcal M$. Our work explores natural ``geometric'' measures on these laminations. We begin with a brief self-contained introduction to the measure theory on laminations by discussing the relationship between leafwise, transverse and global measures. The central themes of our study are: leafwise and transverse ``conformal streams'' on an affine lamination $\mathcal A$ (analogues of the Patterson-Sullivan conformal measures for Kleinian groups), harmonic and invariant measures on the corresponding hyperbolic lamination $\mathcal H$, the ``Anosov--Sinai cocycle'', the corresponding ``basic cohomology class'' on $\mathcal A$ (which provides an obstruction to flatness), and the Busemann cocycle on $\mathcal H$. A number of related geometric objects on laminations -- in particular, the backward and forward Poincare series and the associated critical exponents, the curvature forms and the Euler class, currents and transverse invariant measures, $\lambda$-harmonic functions and the leafwise Brownian motion -- are discussed along the lines. The main examples are provided by the laminations arising from the Kleinian and the rational dynamics. In the former case, $\mathcal M$ is a sublamination of the unit tangent bundle of a hyperbolic 3-manifold, its transversals can be identified with the limit set of the Kleinian group, and we show how the classical theory of Patterson-Sullivan measures can be recast in terms of our general approach. In the latter case, the laminations were recently constructed by Lyubich and Minsky in [LM97]. Assuming that they are locally compact, we construct a transverse $\delta$-conformal stream on $\mathcal A$ and the corresponding $\lambda$-harmonic measure on $\mathcal M$, where $\lambda=\delta(\delta-2)$. We prove that the exponent $\delta$ of the stream does not exceed 2 and that the affine laminations are never flat except for several explicit special cases (rational functions with parabolic Thurston orbifold).
Book Synopsis Moduli Spaces of Polynomials in Two Variables by : Javier Fernández de Bobadilla
Download or read book Moduli Spaces of Polynomials in Two Variables written by Javier Fernández de Bobadilla and published by American Mathematical Soc.. This book was released on 2005 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Investigates the geometry of the orbit space. This book associates a graph with each polynomial in two variables that encodes part of its geometric properties at infinity. It also defines a partition of $\mathbb{C} x, y]$ imposing that the polynomials in the same stratum are the polynomials with a fixed associated graph
Book Synopsis Measure Theoretic Laws for lim sup Sets by : Victor Beresnevich Detta Dickinson Sanju Velani
Download or read book Measure Theoretic Laws for lim sup Sets written by Victor Beresnevich Detta Dickinson Sanju Velani and published by American Mathematical Soc.. This book was released on 2005-12-01 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given a compact metric space $(\Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $\psi$, we consider a natural class of lim sup subsets $\Lambda(\psi)$ of $\Omega$. The classical lim sup set $W(\psi)$ of `$\psi$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $\Lambda(\psi)$ to be either positive or full in $\Omega$ and for the Hausdorff $f$-measure to be infinite. The classical theorems of Khintchine-Groshev and Jarnik concerning $W(\psi)$ fall into our general framework. The main results provide a unifying treatment of numerous problems in metric Diophantine approximation including those for real, complex and $p$-adic fields associated with both independent and dependent quantities. Applications also include those to Kleinian groups and rational maps. Compared to previous works our framework allows us to successfully remove many unnecessary conditions and strengthen fundamental results such as Jarnik's theorem and the Baker-Schmidt theorem. In particular, the strengthening of Jarnik's theorem opens up the Duffin-Schaeffer conjecture for Hausdorff measures.
Book Synopsis Relatively Hyperbolic Groups: Intrinsic Geometry, Algebraic Properties, and Algorithmic Problems by : Denis V. Osin
Download or read book Relatively Hyperbolic Groups: Intrinsic Geometry, Algebraic Properties, and Algorithmic Problems written by Denis V. Osin and published by American Mathematical Soc.. This book was released on 2006 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this the authors obtain an isoperimetric characterization of relatively hyperbolicity of a groups with respect to a collection of subgroups. This allows them to apply classical combinatorial methods related to van Kampen diagrams to obtain relative analogues of some well-known algebraic and geometric properties of ordinary hyperbolic groups. There is also an introduction and study of the notion of a relatively quasi-convex subgroup of a relatively hyperbolic group and solve somenatural algorithmic problems.
Book Synopsis Asymptotic Behaviour of Tame Harmonic Bundles and an Application to Pure Twistor $D$-Modules, Part 2 by : Takuro Mochizuki
Download or read book Asymptotic Behaviour of Tame Harmonic Bundles and an Application to Pure Twistor $D$-Modules, Part 2 written by Takuro Mochizuki and published by American Mathematical Soc.. This book was released on 2007 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author studies the asymptotic behaviour of tame harmonic bundles. First he proves a local freeness of the prolongment of deformed holomorphic bundle by an increasing order. Then he obtains the polarized mixed twistor structure from the data on the divisors. As one of the applications, he obtains the norm estimate of holomorphic or flat sections by weight filtrations of the monodromies. As another application, the author establishes the correspondence of semisimple regularholonomic $D$-modules and polarizable pure imaginary pure twistor $D$-modules through tame pure imaginary harmonic bundles, which is a conjecture of C. Sabbah. Then the regular holonomic version of M. Kashiwara's conjecture follows from the results of Sabbah and the author.
Book Synopsis A Sharp Threshold for Random Graphs with a Monochromatic Triangle in Every Edge Coloring by : Ehud Friedgut
Download or read book A Sharp Threshold for Random Graphs with a Monochromatic Triangle in Every Edge Coloring written by Ehud Friedgut and published by American Mathematical Soc.. This book was released on 2006 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let $\cal{R}$ be the set of all finite graphs $G$ with the Ramsey property that every coloring of the edges of $G$ by two colors yields a monochromatic triangle. In this paper the authors establish a sharp threshold for random graphs with this property. Let $G(n, p)$ be the random graph on $n$ vertices with edge probability $p$. The authors prove that there exists a function $\widehat c=\widehat c(n)=\Theta(1)$ such that for any $\varepsilon > 0$, as $n$ tends to infinity, $Pr\left[G(n, (1-\varepsilon)\widehat c/\sqrt{n}) \in \cal{R} \right] \rightarrow 0$ and $Pr \left[ G(n, (1]\varepsilon)\widehat c/\sqrt{n}) \in \cal{R}\ \right] \rightarrow 1.$. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemeredi's Regularity Lemma to a certain hypergraph setti
Book Synopsis Asymptotic Behaviour of Tame Harmonic Bundles and an Application to Pure Twistor $D$-Modules, Part 1 by : Takuro Mochizuki
Download or read book Asymptotic Behaviour of Tame Harmonic Bundles and an Application to Pure Twistor $D$-Modules, Part 1 written by Takuro Mochizuki and published by American Mathematical Soc.. This book was released on 2007 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author studies the asymptotic behaviour of tame harmonic bundles. First he proves a local freeness of the prolongment of deformed holomorphic bundle by an increasing order. Then he obtains the polarized mixed twistor structure from the data on the divisors. As one of the applications, he obtains the norm estimate of holomorphic or flat sections by weight filtrations of the monodromies. As another application, the author establishes the correspondence of semisimple regular holonomic $D$-modules and polarizable pure imaginary pure twistor $D$-modules through tame pure imaginary harmonic bundles, which is a conjecture of C. Sabbah. Then the regular holonomic version of M. Kashiwara's conjecture follows from the results of Sabbah and the author.
Book Synopsis Measure Theoretic Laws for lim sup Sets by : Victor Beresnevich
Download or read book Measure Theoretic Laws for lim sup Sets written by Victor Beresnevich and published by American Mathematical Soc.. This book was released on 2006 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given a compact metric space $(\Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $\psi$, we consider a natural class of lim sup subsets $\Lambda(\psi)$ of $\Omega$. The classical lim sup set $W(\psi)$ of `$\p$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $\Lambda(\psi)$to be either positive or full in $\Omega$ and for the Hausdorff $f$-measure to be infinite. The classical theorems of Khintchine-Groshev and Jarník concerning $W(\psi)$ fall into our general framework. The main results provide a unifying treatment of numerous problems in metric Diophantineapproximation including those for real, complex and $p$-adic fields associated with both independent and dependent quantities. Applications also include those to Kleinian groups and rational maps. Compared to previous works our framework allows us to successfully remove many unnecessary conditions and strengthen fundamental results such as Jarník's theorem and the Baker-Schmidt theorem. In particular, the strengthening of Jarník's theorem opens up the Duffin-Schaeffer conjecturefor Hausdorff measures.
Book Synopsis Equivalences of Classifying Spaces Completed at the Prime Two by : Robert Oliver
Download or read book Equivalences of Classifying Spaces Completed at the Prime Two written by Robert Oliver and published by American Mathematical Soc.. This book was released on 2006 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: We prove here the Martino-Priddy conjecture at the prime $2$: the $2$-completions of the classifying spaces of two finite groups $G$ and $G'$ are homotopy equivalent if and only if there is an isomorphism between their Sylow $2$-subgroups which preserves fusion. This is a consequence of a technical algebraic result, which says that for a finite group $G$, the second higher derived functor of the inverse limit vanishes for a certain functor $\mathcal{Z}_G$ on the $2$-subgroup orbit category of $G$. The proof of this result uses the classification theorem for finite simple groups.