A Hilbert Space Problem Book

Download A Hilbert Space Problem Book PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468493302
Total Pages : 385 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis A Hilbert Space Problem Book by : P.R. Halmos

Download or read book A Hilbert Space Problem Book written by P.R. Halmos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Preface: "This book was written for the active reader. The first part consists of problems, frequently preceded by definitions and motivation, and sometimes followed by corollaries and historical remarks... The second part, a very short one, consists of hints... The third part, the longest, consists of solutions: proofs, answers, or contructions, depending on the nature of the problem.... This is not an introduction to Hilbert space theory. Some knowledge of that subject is a prerequisite: at the very least, a study of the elements of Hilbert space theory should proceed concurrently with the reading of this book."

Hilbert-Courant

Download Hilbert-Courant PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387962566
Total Pages : 620 pages
Book Rating : 4.9/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Hilbert-Courant by : Constance Reid

Download or read book Hilbert-Courant written by Constance Reid and published by Springer Science & Business Media. This book was released on 1986-05-22 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: I am very pleased that my books about David Hilbert, published in 1970, and Richard Courant, published in 1976, are now being issued by Springer Verlag in a single volume. I have always felt that they belonged together, Courant being, as I have written, the natural and necessary sequel to Hilbert the rest of the story. To make the two volumes more compatible when published as one, we have combined and brought up to date the indexes of names and dates. U nfortu nately we have had to omit Hermann Weyl's article on "David Hilbert and his mathematical work," but the interested reader can always find it in the hard back edition of Hilbert and in Weyl's collected papers. At the request of a number of readers we have included a listing of all of Hilbert's famous Paris problems. It was, of course, inevitable that we would give the resulting joint volume the title Hilbert-Courant.

An Introduction to Hilbert Space and Quantum Logic

Download An Introduction to Hilbert Space and Quantum Logic PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461388414
Total Pages : 159 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Hilbert Space and Quantum Logic by : David W. Cohen

Download or read book An Introduction to Hilbert Space and Quantum Logic written by David W. Cohen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historically, nonclassical physics developed in three stages. First came a collection of ad hoc assumptions and then a cookbook of equations known as "quantum mechanics". The equations and their philosophical underpinnings were then collected into a model based on the mathematics of Hilbert space. From the Hilbert space model came the abstaction of "quantum logics". This book explores all three stages, but not in historical order. Instead, in an effort to illustrate how physics and abstract mathematics influence each other we hop back and forth between a purely mathematical development of Hilbert space, and a physically motivated definition of a logic, partially linking the two throughout, and then bringing them together at the deepest level in the last two chapters. This book should be accessible to undergraduate and beginning graduate students in both mathematics and physics. The only strict prerequisites are calculus and linear algebra, but the level of mathematical sophistication assumes at least one or two intermediate courses, for example in mathematical analysis or advanced calculus. No background in physics is assumed.

Hilbert's Fifth Problem and Related Topics

Download Hilbert's Fifth Problem and Related Topics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 147041564X
Total Pages : 354 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Hilbert's Fifth Problem and Related Topics by : Terence Tao

Download or read book Hilbert's Fifth Problem and Related Topics written by Terence Tao and published by American Mathematical Soc.. This book was released on 2014-07-18 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively; more generally, a satisfactory description of the (mesoscopic) structure of locally compact groups was established. Subsequently, this structure theory was used to prove Gromov's theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner, starting with the analytic structural theory of real Lie groups and Lie algebras (emphasising the role of one-parameter groups and the Baker-Campbell-Hausdorff formula), then presenting a proof of the Gleason-Yamabe structure theorem for locally compact groups (emphasising the role of Gleason metrics), from which the solution to Hilbert's fifth problem follows as a corollary. After reviewing some model-theoretic preliminaries (most notably the theory of ultraproducts), the combinatorial applications of the Gleason-Yamabe theorem to approximate groups and groups of polynomial growth are then given. A large number of relevant exercises and other supplementary material are also provided.

The Foundations of Geometry

Download The Foundations of Geometry PDF Online Free

Author :
Publisher : Read Books Ltd
ISBN 13 : 1473395941
Total Pages : 139 pages
Book Rating : 4.4/5 (733 download)

DOWNLOAD NOW!


Book Synopsis The Foundations of Geometry by : David Hilbert

Download or read book The Foundations of Geometry written by David Hilbert and published by Read Books Ltd. This book was released on 2015-05-06 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.

Hilbert's Programs and Beyond

Download Hilbert's Programs and Beyond PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0195372220
Total Pages : 452 pages
Book Rating : 4.1/5 (953 download)

DOWNLOAD NOW!


Book Synopsis Hilbert's Programs and Beyond by : Wilfried Sieg

Download or read book Hilbert's Programs and Beyond written by Wilfried Sieg and published by Oxford University Press. This book was released on 2013-03-07 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: David Hilbert was one of the great mathematicians who expounded the centrality of their subject in human thought. In this collection of essays, Wilfried Sieg frames Hilbert's foundational work, from 1890 to 1939, in a comprehensive way and integrates it with modern proof theoretic investigations.

Convex Analysis and Monotone Operator Theory in Hilbert Spaces

Download Convex Analysis and Monotone Operator Theory in Hilbert Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319483110
Total Pages : 624 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Monotone Operator Theory in Hilbert Spaces by : Heinz H. Bauschke

Download or read book Convex Analysis and Monotone Operator Theory in Hilbert Spaces written by Heinz H. Bauschke and published by Springer. This book was released on 2017-02-28 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.

Geometry and the Imagination

Download Geometry and the Imagination PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470463024
Total Pages : 357 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Geometry and the Imagination by : D. Hilbert

Download or read book Geometry and the Imagination written by D. Hilbert and published by American Mathematical Soc.. This book was released on 2021-03-17 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This remarkable book has endured as a true masterpiece of mathematical exposition. There are few mathematics books that are still so widely read and continue to have so much to offer—even after more than half a century has passed! The book is overflowing with mathematical ideas, which are always explained clearly and elegantly, and above all, with penetrating insight. It is a joy to read, both for beginners and experienced mathematicians. “Hilbert and Cohn-Vossen” is full of interesting facts, many of which you wish you had known before. It's also likely that you have heard those facts before, but surely wondered where they could be found. The book begins with examples of the simplest curves and surfaces, including thread constructions of certain quadrics and other surfaces. The chapter on regular systems of points leads to the crystallographic groups and the regular polyhedra in R 3 R3. In this chapter, they also discuss plane lattices. By considering unit lattices, and throwing in a small amount of number theory when necessary, they effortlessly derive Leibniz's series: π/4=1−1/3+1/5−1/7+−… π/4=1−1/3+1/5−1/7+−…. In the section on lattices in three and more dimensions, the authors consider sphere-packing problems, including the famous Kepler problem. One of the most remarkable chapters is “Projective Configurations”. In a short introductory section, Hilbert and Cohn-Vossen give perhaps the most concise and lucid description of why a general geometer would care about projective geometry and why such an ostensibly plain setup is truly rich in structure and ideas. Here, we see regular polyhedra again, from a different perspective. One of the high points of the chapter is the discussion of Schlafli's Double-Six, which leads to the description of the 27 lines on the general smooth cubic surface. As is true throughout the book, the magnificent drawings in this chapter immeasurably help the reader. A particularly intriguing section in the chapter on differential geometry is Eleven Properties of the Sphere. Which eleven properties of such a ubiquitous mathematical object caught their discerning eye and why? Many mathematicians are familiar with the plaster models of surfaces found in many mathematics departments. The book includes pictures of some of the models that are found in the Göttingen collection. Furthermore, the mysterious lines that mark these surfaces are finally explained! The chapter on kinematics includes a nice discussion of linkages and the geometry of configurations of points and rods that are connected and, perhaps, constrained in some way. This topic in geometry has become increasingly important in recent times, especially in applications to robotics. This is another example of a simple situation that leads to a rich geometry. It would be hard to overestimate the continuing influence Hilbert-Cohn-Vossen's book has had on mathematicians of this century. It surely belongs in the “pantheon” of great mathematics books.

Methods of Mathematical Physics

Download Methods of Mathematical Physics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527617248
Total Pages : 852 pages
Book Rating : 4.5/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Methods of Mathematical Physics by : Richard Courant

Download or read book Methods of Mathematical Physics written by Richard Courant and published by John Wiley & Sons. This book was released on 2008-09-26 with total page 852 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first volume of this work came out in Germany in 1937, this book, together with its first volume, has remained standard in the field. Courant and Hilbert's treatment restores the historically deep connections between physical intuition and mathematical development, providing the reader with a unified approach to mathematical physics. The present volume represents Richard Courant's final revision of 1961.

From Kant to Hilbert Volume 1

Download From Kant to Hilbert Volume 1 PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 : 0198505353
Total Pages : 695 pages
Book Rating : 4.1/5 (985 download)

DOWNLOAD NOW!


Book Synopsis From Kant to Hilbert Volume 1 by : William Bragg Ewald

Download or read book From Kant to Hilbert Volume 1 written by William Bragg Ewald and published by Oxford University Press, USA. This book was released on 1996 with total page 695 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume work provides an overview of this important era of mathematical research through a carefully chosen selection of articles. They provide an insight into the foundations of each of the main branches of mathematics - algebra, geometry, number theory, analysis, logic, and set theory - with narratives to show how they are linked.

An Introduction to Hilbert Space

Download An Introduction to Hilbert Space PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107717167
Total Pages : 254 pages
Book Rating : 4.1/5 (77 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Hilbert Space by : N. Young

Download or read book An Introduction to Hilbert Space written by N. Young and published by Cambridge University Press. This book was released on 1988-07-21 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is an introduction to the theory of Hilbert space and its applications. The notion of Hilbert space is central in functional analysis and is used in numerous branches of pure and applied mathematics. Dr Young has stressed applications of the theory, particularly to the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. It is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). Thus it will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.

Gaussian Hilbert Spaces

Download Gaussian Hilbert Spaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521561280
Total Pages : 358 pages
Book Rating : 4.5/5 (215 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Hilbert Spaces by : Svante Janson

Download or read book Gaussian Hilbert Spaces written by Svante Janson and published by Cambridge University Press. This book was released on 1997-06-12 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book treats the very special and fundamental mathematical properties that hold for a family of Gaussian (or normal) random variables. Such random variables have many applications in probability theory, other parts of mathematics, statistics and theoretical physics. The emphasis throughout this book is on the mathematical structures common to all these applications. This will be an excellent resource for all researchers whose work involves random variables.

Lectures on Hilbert Schemes of Points on Surfaces

Download Lectures on Hilbert Schemes of Points on Surfaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821819569
Total Pages : 146 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Hilbert Schemes of Points on Surfaces by : Hiraku Nakajima

Download or read book Lectures on Hilbert Schemes of Points on Surfaces written by Hiraku Nakajima and published by American Mathematical Soc.. This book was released on 1999 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: It has been realized that Hilbert schemes originally studied in algebraic geometry are closely related to several branches of mathematics, such as singularities, symplectic geometry, representation theory - even theoretical physics. This book reflects this feature of Hilbert schemes.

Haboo

Download Haboo PDF Online Free

Author :
Publisher : University of Washington Press
ISBN 13 : 029574698X
Total Pages : 228 pages
Book Rating : 4.2/5 (957 download)

DOWNLOAD NOW!


Book Synopsis Haboo by :

Download or read book Haboo written by and published by University of Washington Press. This book was released on 2020-04-27 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The stories and legends of the Lushootseed-speaking people of Puget Sound represent an important part of the oral tradition by which one generation hands down beliefs, values, and customs to another. Vi Hilbert grew up when many of the old social patterns survived and everyone spoke the ancestral language. Haboo, Hilbert’s collection of thirty-three stories, features tales mostly set in the Myth Age, before the world transformed. Animals, plants, trees, and even rocks had human attributes. Prominent characters like Wolf, Salmon, and Changer and tricksters like Mink, Raven, and Coyote populate humorous, earthy stories that reflect foibles of human nature, convey serious moral instruction, and comically detail the unfortunate, even disastrous consequences of breaking taboos. Beautifully redesigned and with a new foreword by Jill La Pointe, Haboo offers a vivid and invaluable resource for linguists, anthropologists, folklorists, future generations of Lushootseed-speaking people, and others interested in Native languages and cultures.

Painleve Transcendents

Download Painleve Transcendents PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082183651X
Total Pages : 570 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Painleve Transcendents by : A. S. Fokas

Download or read book Painleve Transcendents written by A. S. Fokas and published by American Mathematical Soc.. This book was released on 2006 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the turn of the twentieth century, the French mathematician Paul Painleve and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painleve I-VI. Although these equations were initially obtainedanswering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painleve transcendents (i.e., the solutionsof the Painleve equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points, play a crucial role in the applications of these functions. It is shown in this book, that even though the six Painleve equations are nonlinear, it is still possible, using a new technique called theRiemann-Hilbert formalism, to obtain analogous explicit formulas for the Painleve transcendents. This striking fact, apparently unknown to Painleve and his contemporaries, is the key ingredient for the remarkable applicability of these ``nonlinear special functions''. The book describes in detail theRiemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painleve functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painleve equations and related areas.

Introduction to Spectral Theory in Hilbert Space

Download Introduction to Spectral Theory in Hilbert Space PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1483164179
Total Pages : 362 pages
Book Rating : 4.4/5 (831 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Spectral Theory in Hilbert Space by : Gilbert Helmberg

Download or read book Introduction to Spectral Theory in Hilbert Space written by Gilbert Helmberg and published by Elsevier. This book was released on 2014-11-28 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: North-Holland Series in Applied Mathematics and Mechanics, Volume 6: Introduction to Spectral Theory in Hilbert Space focuses on the mechanics, principles, and approaches involved in spectral theory in Hilbert space. The publication first elaborates on the concept and specific geometry of Hilbert space and bounded linear operators. Discussions focus on projection and adjoint operators, bilinear forms, bounded linear mappings, isomorphisms, orthogonal subspaces, base, subspaces, finite dimensional Euclidean space, and normed linear spaces. The text then takes a look at the general theory of linear operators and spectral analysis of compact linear operators, including spectral decomposition of a compact selfadjoint operator, weakly convergent sequences, spectrum of a compact linear operator, and eigenvalues of a linear operator. The manuscript ponders on the spectral analysis of bounded linear operators and unbounded selfadjoint operators. Topics include spectral decomposition of an unbounded selfadjoint operator and bounded normal operator, functions of a unitary operator, step functions of a bounded selfadjoint operator, polynomials in a bounded operator, and order relation for bounded selfadjoint operators. The publication is a valuable source of data for mathematicians and researchers interested in spectral theory in Hilbert space.

From Kant to Hilbert Volume 2

Download From Kant to Hilbert Volume 2 PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0198505361
Total Pages : 709 pages
Book Rating : 4.1/5 (985 download)

DOWNLOAD NOW!


Book Synopsis From Kant to Hilbert Volume 2 by : William Bragg Ewald

Download or read book From Kant to Hilbert Volume 2 written by William Bragg Ewald and published by Oxford University Press. This book was released on 1999 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume work brings together a comprehensive selection of mathematical works from the period 1707-1930. During this time the foundations of modern mathematics were laid, and From Kant to Hilbert provides an overview of the foundational work in each of the main branches of mathmeatics with narratives showing how they were linked. Now available as a separate volume.