High-power Laser Material Processing for Engineers

Download High-power Laser Material Processing for Engineers PDF Online Free

Author :
Publisher :
ISBN 13 : 9781032781914
Total Pages : 0 pages
Book Rating : 4.7/5 (819 download)

DOWNLOAD NOW!


Book Synopsis High-power Laser Material Processing for Engineers by : Joerg Volpp

Download or read book High-power Laser Material Processing for Engineers written by Joerg Volpp and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book focuses on the mechanisms of how laser light is produced, guided, and focused for materials processing, explained in easily understandable language for practical use. It emphasizes a basic understanding of the principles necessary to run lasers in a safe and efficient way and provides information for quick access to laser materials processing for laser users. Provides simple explanations and descriptions of complex laser material interaction mechanisms to help readers understand relevant effects during laser beam irradiation of materials. Explains the main high-power laser materials processing methods, giving hints to get started with the processing and how to avoid imperfections. Focuses on high-power laser applications that are explained in an accessible, descriptive way with practical explanations and minimal formulas. Teaches how to measure laser beam characteristics and how to install and handle laser equipment correctly. Gives practical advice on typical equipment arrangements and parameter ranges. This practical handbook serves as a guide for students studying production technologies to learn about laser processes and for engineers that want to start safely and quickly working with laser processes"--

Advances in High-Power Fiber and Diode Laser Engineering

Download Advances in High-Power Fiber and Diode Laser Engineering PDF Online Free

Author :
Publisher : Institution of Engineering and Technology
ISBN 13 : 1785617516
Total Pages : 400 pages
Book Rating : 4.7/5 (856 download)

DOWNLOAD NOW!


Book Synopsis Advances in High-Power Fiber and Diode Laser Engineering by : Ivan Divliansky

Download or read book Advances in High-Power Fiber and Diode Laser Engineering written by Ivan Divliansky and published by Institution of Engineering and Technology. This book was released on 2019-12-30 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in High-Power Fiber and Diode Laser Engineering provides an overview of recent research trends in fiber and diode lasers and laser systems engineering. In recent years, many new fiber designs and fiber laser system strategies have emerged, targeting the mitigation of different problems which occur when standard optical fibers are used for making high-power lasers. Simultaneously, a lot of attention has been put to increasing the brightness and the output power of laser diodes. Both of these major laser development directions continue to advance at a rapid pace with the sole purpose of achieving higher power while having excellent beam quality. The book begins by introducing the principles of diode lasers and methods for improving their brightness. Later chapters cover quantum cascade lasers, diode pumped high power lasers, high average power LMA fiber amplifiers, high-power fiber lasers, beam combinable kilowatt all-fiber amplifiers, and applications of 2 μm thulium fiber lasers and high-power GHz linewidth diode lasers. Written by a team of authors with experience in academia and industrial research and development, and brought together by an expert editor, this book will be of use to anyone interested in laser systems development at the laboratory or commercial scale.

High Power Lasers in Production Engineering

Download High Power Lasers in Production Engineering PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810230395
Total Pages : 466 pages
Book Rating : 4.2/5 (33 download)

DOWNLOAD NOW!


Book Synopsis High Power Lasers in Production Engineering by : Dieter Schu”cker

Download or read book High Power Lasers in Production Engineering written by Dieter Schu”cker and published by World Scientific. This book was released on 1999 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: High power lasers of either the gas or solid state type can be used to generate a focal spot with a diameter of about a tenth of a millimetre and a power density of up to 100 Mio W/cm2. With these intensities all materials can be heated up rapidly, leading to fast melting, violent evaporation or even plasma formation. So laser beams can be utilized for various processing tasks, such as transformation hardening, cutting and ablation or welding and cladding or even rapid prototyping. With these processes, important advantages are achieved compared to conventional tools such as high processing speed due to the high concentration of energy and high quality of the processed workpiece without deformations due to the small overall heat input to the workpiece that corresponds to the small spot diameter. All these advantages finally result in strongly reduced production costs, which is the main reason for a world-wide substitution of conventional processes and other beam tools by laser technology.This monograph offers a great insight into the operation principles of high power laser sources, the phenomena of interaction of laser beams and materials and the mechanisms of the various production processes with lasers ? thus enabling production engineers and others to make optimum use of the benefits of laser technology and to understand the technical properties and the physical limitations of this most recent technology (especially in comparison to conventional tools and other beam tools), and providing a sufficient basis for the understanding and use of future developments in this area.

High-Power Laser Material Processing for Engineers

Download High-Power Laser Material Processing for Engineers PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1040097510
Total Pages : 178 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis High-Power Laser Material Processing for Engineers by : Joerg Volpp

Download or read book High-Power Laser Material Processing for Engineers written by Joerg Volpp and published by CRC Press. This book was released on 2024-08-07 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the mechanisms of how laser light is produced, guided, and focused for materials processing, and these are explained in an easy-to-understand language for practical use. It emphasizes a basic understanding of the principles necessary to run lasers in a safe and efficient way and provides information for quick access to laser materials processing for laser users. The book exhibits the following features: • Provides simple explanations and descriptions of complex laser material interaction mechanisms to help readers understand relevant effects during laser beam irradiation of materials. • Explains the main high-power laser materials processing methods, giving hints to get started with the processing and how to avoid imperfections. • Focuses on high-power laser applications that are explained in an accessible, descriptive way with practical explanations and minimal formulas. • Teaches how to measure laser beam characteristics and how to install and handle laser equipment correctly. • Gives practical advice on typical equipment arrangements and parameter ranges. This practical handbook serves as a guide for students studying production technologies to learn about laser processes, and for engineers who want to start working with laser processes safely and quickly.

Laser Processing of Engineering Materials

Download Laser Processing of Engineering Materials PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080492800
Total Pages : 576 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Laser Processing of Engineering Materials by : John Ion

Download or read book Laser Processing of Engineering Materials written by John Ion and published by Elsevier. This book was released on 2005-03-22 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: The complete guide to understanding and using lasers in material processing! Lasers are now an integral part of modern society, providing extraordinary opportunities for innovation in an ever-widening range of material processing and manufacturing applications. The study of laser material processing is a core element of many materials and manufacturing courses at undergraduate and postgraduate level. As a consequence, there is now a vast amount of research on the theory and application of lasers to be absorbed by students, industrial researchers, practising engineers and production managers. Written by an acknowledged expert in the field with over twenty years' experience in laser processing, John Ion distils cutting-edge information and research into a single key text. Essential for anyone studying or working with lasers, Laser Processing of Engineering Materials provides a clear explanation of the underlying principles, including physics, chemistry and materials science, along with a framework of available laser processes and their distinguishing features and variables. This book delivers the knowledge needed to understand and apply lasers to the processing of engineering materials, and is highly recommended as a valuable guide to this revolutionary manufacturing technology. The first single volume text that treats this core engineering subject in a systematic manner Covers the principles, practice and application of lasers in all contemporary industrial processes; packed with examples, materials data and analysis, and modelling techniques

Solid-State Lasers for Materials Processing

Download Solid-State Lasers for Materials Processing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540465855
Total Pages : 357 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Solid-State Lasers for Materials Processing by : Reinhard Iffländer

Download or read book Solid-State Lasers for Materials Processing written by Reinhard Iffländer and published by Springer. This book was released on 2012-11-13 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "Takes the reader on a journey that covers all the basic science and engineering related to the topic of developing a solid-state laser for common materials processing problems. [...] Entrants to the field will certainly find it a book to keep for future reference." Optics & Photonic News

Laser Material Processing

Download Laser Material Processing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447137523
Total Pages : 416 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Laser Material Processing by : William M. Steen

Download or read book Laser Material Processing written by William M. Steen and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: New chapters on bending and cleaning reflect the changes in the field since the last edition, completing the range of practical knowledge about the processes possible with lasers already familiar to users of this well-known text. Professor Steen's lively presentation is supported by a number of original cartoons by Patrick Wright and Noel Ford, which will bring a smile to your face and ease the learning process. From the reviews: "...well organized, and the text is very practical...The engineering community will find this book informative and useful." (OPTICS AND PHOTONICS NEWS, July/August 2005)

Laser Materials Processing

Download Laser Materials Processing PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482273500
Total Pages : 336 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Laser Materials Processing by : Leonard R. Migliore

Download or read book Laser Materials Processing written by Leonard R. Migliore and published by CRC Press. This book was released on 2018-10-08 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume discusses the basic principles necessary to understand lasers, explains laser interactions with materials, and surveys the wide variety of industrial applications of the major laser types, covering in detail the operating mechanisms of carbon dioxide, Nd:YAG, and excimer lasers. It presents lasers as manufacturing tools rather than laboratory devices.

Advanced Manufacturing Techniques Using Laser Material Processing

Download Advanced Manufacturing Techniques Using Laser Material Processing PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1522503307
Total Pages : 288 pages
Book Rating : 4.5/5 (225 download)

DOWNLOAD NOW!


Book Synopsis Advanced Manufacturing Techniques Using Laser Material Processing by : Akinlabi, Esther Titilayo

Download or read book Advanced Manufacturing Techniques Using Laser Material Processing written by Akinlabi, Esther Titilayo and published by IGI Global. This book was released on 2016-04-14 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of lasers in material processing has become a useful method for transforming industrial materials into finished products. The benefits of laser material processing are vast, including increased precision, high processing speed, and dustless cutting and drilling. Advanced Manufacturing Techniques Using Laser Material Processing explores the latest methodologies for using lasers in materials manufacturing and production, the benefits of using lasers in industrial settings, as well as future outlooks for this technology. This innovative publication is an essential reference source for professionals, researchers, and graduate-level students studying manufacturing technologies and industrial engineering.

High Power Laser Handbook

Download High Power Laser Handbook PDF Online Free

Author :
Publisher : McGraw Hill Professional
ISBN 13 : 0071609024
Total Pages : 618 pages
Book Rating : 4.0/5 (716 download)

DOWNLOAD NOW!


Book Synopsis High Power Laser Handbook by : Hagop Injeyan

Download or read book High Power Laser Handbook written by Hagop Injeyan and published by McGraw Hill Professional. This book was released on 2011-01-05 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: The State of the Art in High-Power Laser Technology Filled with full-color images, High-Power Laser Handbook offers comprehensive details on the latest advances in high-power laser development and applications. Performance parameters for each major class of lasers are described. The book covers high-power gas, chemical, and free-electron lasers and then discusses semiconductor diode lasers, along with the associated technologies of packaging, reliability, and beam shaping and delivery. Current research and development in solid-state lasers is described as well as scaling approaches for high CW powers, high pulse energies, and high peak powers. This authoritative work also addresses the emergence of fiber lasers and concludes by reviewing various methods for beam combining. Coverage Includes: Carbon dioxide lasers Excimer lasers Chemical lasers High-power free-electron lasers Semiconductor laser diodes High-power diode laser arrays Introduction to high-power solid-state lasers Zig-zag slab lasers ThinZag high-power laser development Thin disk lasers Heat capacity lasers Ultrafast solid-state lasers Ultrafast lasers in the thin disk geometry The National Ignition Facility laser Optical fiber lasers Pulsed fiber lasers High-power ultrafast fiber laser systems High-power fiber lasers for industry and defense Beam combining

High Power Lasers in Production Engineering

Download High Power Lasers in Production Engineering PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 9813105054
Total Pages : 464 pages
Book Rating : 4.8/5 (131 download)

DOWNLOAD NOW!


Book Synopsis High Power Lasers in Production Engineering by : Dieter Schuöcker

Download or read book High Power Lasers in Production Engineering written by Dieter Schuöcker and published by World Scientific Publishing Company. This book was released on 1999-03-03 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: High power lasers of either the gas or solid state type can be used to generate a focal spot with a diameter of about a tenth of a millimetre and a power density of up to 100 Mio W/cm2. With these intensities all materials can be heated up rapidly, leading to fast melting, violent evaporation or even plasma formation. So laser beams can be utilized for various processing tasks, such as transformation hardening, cutting and ablation or welding and cladding or even rapid prototyping. With these processes, important advantages are achieved compared to conventional tools such as high processing speed due to the high concentration of energy and high quality of the processed workpiece without deformations due to the small overall heat input to the workpiece that corresponds to the small spot diameter. All these advantages finally result in strongly reduced production costs, which is the main reason for a world-wide substitution of conventional processes and other beam tools by laser technology. This monograph offers a great insight into the operation principles of high power laser sources, the phenomena of interaction of laser beams and materials and the mechanisms of the various production processes with lasers — thus enabling production engineers and others to make optimum use of the benefits of laser technology and to understand the technical properties and the physical limitations of this most recent technology (especially in comparison to conventional tools and other beam tools), and providing a sufficient basis for the understanding and use of future developments in this area.

High-Power Diode Lasers

Download High-Power Diode Lasers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540478523
Total Pages : 416 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis High-Power Diode Lasers by : Roland Diehl

Download or read book High-Power Diode Lasers written by Roland Diehl and published by Springer Science & Business Media. This book was released on 2003-07-01 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from the basics of semiconductor lasers with emphasis on the generation of high optical output power the reader is introduced in a tutorial way to all key technologies required to fabricate high-power diode-laser sources. Various applications are exemplified.

Advances in Laser Materials Processing

Download Advances in Laser Materials Processing PDF Online Free

Author :
Publisher : Woodhead Publishing
ISBN 13 : 0081012535
Total Pages : 802 pages
Book Rating : 4.0/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Advances in Laser Materials Processing by : J. R. Lawrence

Download or read book Advances in Laser Materials Processing written by J. R. Lawrence and published by Woodhead Publishing. This book was released on 2017-09-20 with total page 802 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Laser Materials Processing: Technology, Research and Application, Second Edition, provides a revised, updated and expanded overview of the area, covering fundamental theory, technology and methods, traditional and emerging applications and potential future directions. The book begins with an overview of the technology and challenges to applying the technology in manufacturing. Parts Two thru Seven focus on essential techniques and process, including cutting, welding, annealing, hardening and peening, surface treatments, coating and materials deposition. The final part of the book considers the mathematical modeling and control of laser processes. Throughout, chapters review the scientific theory underpinning applications, offer full appraisals of the processes described and review potential future trends. A comprehensive practitioner guide and reference work explaining state-of-the-art laser processing technologies in manufacturing and other disciplines Explores challenges, potential, and future directions through the continuous development of new, application-specific lasers in materials processing Provides revised, expanded and updated coverage

Semiconductor Laser Engineering, Reliability and Diagnostics

Download Semiconductor Laser Engineering, Reliability and Diagnostics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119990335
Total Pages : 522 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Semiconductor Laser Engineering, Reliability and Diagnostics by : Peter W. Epperlein

Download or read book Semiconductor Laser Engineering, Reliability and Diagnostics written by Peter W. Epperlein and published by John Wiley & Sons. This book was released on 2013-03-18 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students. Dr. Peter W. Epperlein is Technology Consultant with his own semiconductor technology consulting business Pwe-PhotonicsElectronics-IssueResolution in the UK. He looks back at a thirty years career in cutting edge photonics and electronics industries with focus on emerging technologies, both in global and start-up companies, including IBM, Hewlett-Packard, Agilent Technologies, Philips/NXP, Essient Photonics and IBM/JDSU Laser Enterprise. He holds Pre-Dipl. (B.Sc.), Dipl. Phys. (M.Sc.) and Dr. rer. nat. (Ph.D.) degrees in physics, magna cum laude, from the University of Stuttgart, Germany. Dr. Epperlein is an internationally recognized expert in compound semiconductor and diode laser technologies. He has accomplished R&D in many device areas such as semiconductor lasers, LEDs, optical modulators, quantum well devices, resonant tunneling devices, FETs, and superconducting tunnel junctions and integrated circuits. His pioneering work on sophisticated diagnostic research has led to many world’s first reports and has been adopted by other researchers in academia and industry. He authored more than seventy peer-reviewed journal papers, published more than ten invention disclosures in the IBM Technical Disclosure Bulletin, has served as reviewer of numerous proposals for publication in technical journals, and has won five IBM Research Division Awards. His key achievements include the design and fabrication of high-power, highly reliable, single mode diode lasers. Book Reviews “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland The book “Semiconductor Laser Engineering, Reliability and Diagnostics” by Dr. P.W. Epperlein is a landmark in the recent literature on semiconductor lasers because it fills a longstanding gap between many excellent books on laser theory and the complex and challenging endeavor to fabricate these devices reproducibly and reliably in an industrial, real world environment. Having worked myself in the early research and development of high power semiconductor lasers, I appreciate the competent, complete and skillful presentation of these three highly interrelated topics, where small effects have dramatic consequences on the success of a final product, on the ultimate performance and on the stringent reliability requirements, which are the name of the game. As the title suggests the author addresses three tightly interwoven and critical topics of state-of-the-art power laser research. The three parts are: device and mode stability engineering (chapter 1, 2), reliability mechanisms and reliability assessment strategies (chapter 3, 4, 5, 6) and finally material and device diagnostics (chapter 7, 8, 9) all treated with a strong focus on the implementation. This emphasis on the complex practical aspects for a large-scale power laser fabrication is a true highlight of the book. The subtle interplay between laser design, reliability strategies, advanced failure analysis and characterization techniques are elaborated in a very rigorous and scientific way using a very clear and easy to read representation of the complex interrelation of the three major topics. I will abstain from trying to provide a complete account of all the topics but mainly concentrate on the numerous highlights. The first part 1 “Laser Engineering” is divided in two chapters on basic electronic-optical, structural, material and resonator laser engineering on the one side, and on single mode control and stability at very high, still reliable power-levels with the trade-off between mirror damage, single mode stability on the other side. To round up the picture less well-known concepts and the state-of-the-art of large-area lasers, which can be forced into single-mode operation, are reviewed carefully. The subtle and complex interplay, which is challenging to optimize for a design for reliability and low stress as a major boundary condition is crucial for the design. The section gives a rather complete and well-referenced account of all relevant aspects, relations and trade-offs for understanding the rest of the book. The completeness of the presentation on power laser diode design based on basic physical and plausible arguments is mainly based on analytic mathematical relations as well as experiments providing a new and well-balanced addition for the power diode laser literature in particular. Modern 2D self-consistent electro-optical laser modeling including carrier hole burning and thermal effects – this is important because the weak optical guiding and gain-discrimination depend critically on rather small quantities and effects, which are difficult to optimize experimentally – is used in the book for simulation results, but is not treated separately. The novel and really original, “gap-filling” bulk of the book is elaborated by the author in a very clear way in the following four chapters in the part 2 “Laser Reliability” on laser degradation physics and mirror design and passivation at high power, followed then by two very application oriented chapters on reliability design engineering and practical reliability strategies and implementation procedures. This original combination of integral design and reliability aspects – which are mostly neglected in standard literature – is certainly a major plus of this book. I liked this second section as a whole, because it provides excellent insights in degradation physics on a high level and combines it in an interesting and skillful way with the less “glamorous” (unfortunately) but highly relevant reliability science and testing strategies, which is particularly important for devices operating at extreme optical stresses with challenging lifetime requirements in a real word environment. Finally, the last part 3 “Laser Diagnostics” comprising three chapters, is devoted mainly to advanced experimental diagnostics techniques for material integrity, mechanical stress, deep level defects, various dynamic laser degradation effects, surface- and interface quality, and most importantly heating and disordering of mirrors and mirror coatings. The topics of characterization techniques comprising micro-Raman- and micro-thermoreflectance-probing, 2K photoluminescence spectroscopy, micro-electroluminescence and photoluminescence scanning, and deep-level-transient spectroscopy have been pioneered by the author for the specific applications over many years guaranteeing many competent and well represented insights. These techniques are brilliantly discussed and the information distributed in many articles by the author has been successfully unified in a book form. In my personal judgment and liking, I consider the parts 2 and 3 on reliability and diagnostics as the most valuable and true novel contribution of the book, which in combination with the extremely well-covered laser design of part 1 clearly fill the gap in the current diode laser literature, which in this detail has certainly been neglected in the past. In summary, I can highly recommend this excellent, well-organized and clearly written book to readers who are already familiar with basic diode laser theory and who are active in the academic and industrial fabrication and characterization of semiconductor lasers. Due to its completeness, it also serves as an excellent reference of the current state-of-the-art in reliability engineering and device and material diagnostics. Needless to mention that the quality of the book, its representations and methodical structure meet the highest expectation and are certainly a tribute from the long and broad experience of the author in academic laser science and the industrial commercialization of high power diode lasers. In my opinion, this book was a pleasure to read and due to its quality and relevance deserves a large audience in the power diode laser community! Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland June 16, 2013 ========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Dr. Chung-en Zah, Research Director, Semiconductor Technologies Research, S&T Division, Corning Incorporate, Corning NY, USA This book covers for the first time the three closely interrelated key laser areas of engineering (design), reliability and diagnostics in one book, written by the well-known practitioner in cutting-edge optoelectronics industries, Dr. Peter W. Epperlein. The book closes the gap in the current book literature and is thus a unique and excellent example of how to merge design, reliability and diagnostics aspects in a very professional, profound and complete manner. All physical and technological principles, concepts and practical aspects required for developing and fabricating highly-reliable high-power single-mode laser products are precisely specified and skilfully formulated along with all the necessary equations, figures, tables and worked-out examples making it easy to follow through the nine chapters. Hence, this unique book is a milestone in the diode laser literature and is an excellent reference book not only for diode laser researchers and engineers, but also diode laser users. The engineering part starts with a very informative and clear, well-presented account of all necessary basic diode laser types, principles, parameters and characteristics for an easy and quick understanding of laser functionality within the context of the book. Along with an elaborate and broad discussion of relevant laser material systems, applications, typical output powers, power-limiting factors and reliability tradeoffs, basic fabrication and packaging technologies, this excellent introductory section is well suited to become quickly and easily familiar with practical aspects and issues of diode laser technologies. Of special importance and high usefulness is the first analytic and quantitative discussion in a book on issues of coupling laser power into optical single mode fibers. The second section discusses in a well-balanced, competent and skilful way waveguide topics such as basic high-power design approaches, transverse vertical and lateral waveguide concepts, stability of the fundamental transverse lateral mode and fundamental mode waveguide optimization techniques by considering detrimental effects such as heating, carrier injection, spatial hole burning, lateral current spreading and gain profile variations. Less well-known approaches to force large-area lasers into a single mode operation are well-identified and carefully discussed in depth and breadth. All these topics are elaborated in a very complete, rigorous and scientific way and are clearly articulated and easy to read. In particular, the book works out the complex interaction between the many different effects to optimize high-power single-mode performance at ultimate reliability and thus is of great benefit to every researcher and engineer engaged in this diode laser field. Another novelty and highlight is, for the first time ever in book form, a comprehensive yet concise discussion of diode laser reliability related issues. These are elaborated in four distinct chapters comprising laser degradation physics and modes, optical strength enhancement approaches including mirror passivation/coating and non-absorbing mirror technologies, followed by two highly relevant product-oriented chapters on reliability design engineering concepts and techniques and an elaborate reliability test plan for laser chip and module product qualification. This original and novel approach to link laser design to reliability aspects and requirements provides both, most useful insight into degradation processes such as catastrophic optical mirror damage on a microscopic scale, and a wide selection of effective remedial actions. These accounts, which are of highest significance for lasers operating at the optical stress limit due to extremely high output power densities and most demanding lifetime requirements are very professionally prepared and discussed in an interesting, coherent and skilful manner. The diagnostics part, consisting of three very elaborate chapters, is most unique and novel with respect to other diode laser books. It discusses for the first time ever on a very high level and in a competent way studies on material integrity, impurity trapping effects, mirror and cavity temperatures, surface- and interface quality, mirror facet disorder effects, mechanical stress and facet coating instability, and diverse laser temperature effects, dynamic laser degradation effects and mirror temperature maps. Of highest significance to design, performance and reliability are the various correlations established between laser device and material parameters. The most different and sophisticated experiments, carried out by the author at micrometer spatial resolutions and at temperatures as low as 2K, provide highly valuable insights into laser and material quality parameters, and reveal for the first time the origins of high power limitations on an atomic scale due to local heating effects and deep level defects. It is of great benefit, that the experimental techniques such as Raman spectroscopy, various luminescence techniques, thermoreflectance and deep-level transient spectroscopy, pioneered by the author for the specific experiments on lasers, are discussed with great expertise in depth and breadth, and the numerous paper articles published by the author are now represented in this book. The book has an elaborate table of contents and index, which are very useful, over 200 illustrative figures and tables, and extensive lists of references to all technical topics at the end of each of the nine chapters, which make it easy to follow from cover to cover or by jumping in at random areas of special interest. Moreover, experimental and theoretical concepts are always illustrated by practical examples and data. I can highly recommend this extremely relevant, well-structured and well-formulated book to all practising researchers in industrial and academic diode laser R&D environments and to post-graduate engineering students interested in the actual problems of designing, manufacturing, testing, characterising and qualifying diode lasers. Due to its completeness and novel approach to combine design, reliability and diagnostics in the same book, it can serve as an ideal reference book as well, and it deserves to be welcomed wordwide by the addressed audience. Dr. Chung-en Zah, Research Director, Semiconductor Technologies Research, S&T Division, Corning Incorporate, Corning NY, USA =========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Cordinatore Prof. Lorenzo Pavesi, UNIVERSITÀ DEGLI STUDI DI TRENTO, Dipartimento di Fisica / Laboratorio di Nanoscienze This book represents a well thought description of three fundamental aspects of laser technology: the functioning principles, the reliability and the diagnostics. From this point of view, and, as far as I know, this is a unique example of a book where all these aspects are merged together resulting in a well-balanced presentation. This helps the reader to move with ease between different concepts since they are presented in a coherent manner and with the same terminology, symbols and definitions. The book reads well. Despite the subtitle indicates that it is a practical approach, the book is also correct from a formal point of view and presents the necessary equations and derivations to understand both the physical mechanisms and the practicalities via a set of useful formulas. In addition, there is the more important aspect of many real-life examples of how a laser is actually manufactured and which the relevant parameters that determine its behaviour are. It impresses the amounts of information that are given in the book: this would be more typical of a thick handbook on semiconductor laser than of an agile book. Dr. Epperlein was able to identify the most important concepts and to present them in a clear though concise way. I am teaching a course on Optoelectronics and I'm going to advise students to refer to this book, because it has all the necessary concepts and derivations for a systematic understanding of semiconductor lasers with many worked-out examples, which will help the student to grasp the actual problems of designing, manufacturing, testing and using semiconductor lasers. All the various concepts are joined to very useful figures, which, if provided to instructors as files, can be a useful add-on for the use of the book as text for teaching. Concepts are always detailed with numbers to give a feeling of their practical use. In conclusion, I do find the book suitable for my teaching duties and will refer it to my students. Prof. Dr. Lorenzo Pavesi, Head of the Department of Physics, Head of the Nanoscience Laboratory, University of Trento, Italy 31 May 2013 =========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Robert W. Herrick, Ph.D., Senior Component Reliability Engineer, Intel Corp., Santa Clara, California, USA Dr. Epperlein has done the semiconductor laser community a great service, by releasing the most complete book on the market on the practical issues of how to make reliable semiconductor lasers. While dozens of books have been written over the past couple of decades on semiconductor laser design, only a handful have been written on semiconductor laser reliability. Prior to the release of this book, perhaps 40% of the material could be obtained elsewhere by combining five books: one on laser design, one on laser reliability, one on reliability calculations, and a couple of laser review books. Another 40% could be pieced together by collecting 50 -100 papers on the subjects of laser design, laser fabrication, characterization, and reliability. The remaining 20% have not previously been covered in any comprehensive way. Only the introductory material in the first half of the first chapter has good coverage elsewhere. The large majority of the knowledge in this book is generally held as “trade secret” by those with the expertise in the field, and most of those in the know are not free to discuss. The author was fortunate enough to work for the first half of his career in the IBM research labs, with access to unparalleled resources, and the ability to publish his work without trade secret restrictions. The results are still at the cutting edge of our understanding of semiconductor laser reliability today, and go well beyond the empirical “black box” approach many use of “try everything, and see what works.” The author did a fine job of pulling together material from many disparate fields. Dr. Epperlein has particular expertise in high power single mode semiconductor lasers, and those working on those type of lasers will be especially interested in this book, as there has never been a book published on the fabrication and qualification of such lasers before. But those in almost any field of semiconductor lasers will learn items of interest about device design, fabrication, reliability, and characterization. Unlike most other books, which intend to convey the scientific findings or past work of the author, this one is written more as a “how to” manual, which should make it more accessible and useful to development engineers and researchers in the field. It also has over 200 figures, which make it easier to follow. As with many books of this type, it is not necessary to read it from cover-to-cover; it is best skimmed, with deep diving into any areas of special interest to the reader. The book is remarkable also for how comprehensive it is – even experts will discover something new and useful. Dr. Epperlein’s book is an essential read for anyone looking to develop semiconductor lasers for anything other than pure research use, and I give it my highest recommendation. Robert W. Herrick, Ph.D., Senior Component Reliability Engineer, Intel Corp., Santa Clara, California, USA

Gas Lasers

Download Gas Lasers PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351837192
Total Pages : 625 pages
Book Rating : 4.3/5 (518 download)

DOWNLOAD NOW!


Book Synopsis Gas Lasers by : Masamori Endo

Download or read book Gas Lasers written by Masamori Endo and published by CRC Press. This book was released on 2018-10-03 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lasers with a gaseous active medium offer high flexibility, wide tunability, and advantages in cost, beam quality, and power scalability. Gas lasers have tended to become overshadowed by the recent popularity and proliferation of semiconductor lasers. As a result of this shift in focus, details on modern developments in gas lasers are difficult to find. In addition, different types of gas lasers have unique properties that are not well-described in other references. Collecting expert contributions from authorities dealing with specific types of lasers, Gas Lasers examines the fundamentals, current research, and applications of this important class of laser. It is important to understand all types of lasers, from solid-state to gaseous, before making a decision for any application. This book fills in the gaps by discussing the definition and properties of gaseous media along with its fluid dynamics, electric excitation circuits, and optical resonators. From this foundation, the discussion launches into the basic physics, characteristics, applications, and current research efforts for specific types of gas lasers: CO lasers, CO2 lasers, HF/DF lasers, excimer lasers, iodine lasers, and metal vapor lasers. The final chapter discusses miscellaneous lasers not covered in the previous chapters. Collecting hard-to-find material into a single, convenient source, Gas Lasers offers an encyclopedic survey that helps you approach new applications with a more complete inventory of laser options.

Laser Materials Processing

Download Laser Materials Processing PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444601325
Total Pages : 491 pages
Book Rating : 4.4/5 (446 download)

DOWNLOAD NOW!


Book Synopsis Laser Materials Processing by : Michael Bass

Download or read book Laser Materials Processing written by Michael Bass and published by Elsevier. This book was released on 2012-12-02 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser Materials Processing aims to introduce lasers and laser systems to the newcomers to laser terminology and to provide enough background material on lasers to reduce one's hesitation to employ these devices. The book covers the use of lasers in materials processing, including its application in cutting and welding, as well as the principles behind them; laser heat treatment; rapid solidification laser processing at high power density; shaping of materials using lasers; and laser processing of semiconductors. The selection also covers considerations in laser manufacturing and a survey in laser applications. The text is recommended for both experienced laser users, engineers, or scientists yet unfamiliar with the subject. The book is also recommended for those who wish to know about the importance of lasers in the field of materials processing, as the bulk of the book is devoted to the discussions of some of the most important materials processing activities in use or under development.

High-Power Laser Materials Processing

Download High-Power Laser Materials Processing PDF Online Free

Author :
Publisher :
ISBN 13 : 9781510615359
Total Pages : pages
Book Rating : 4.6/5 (153 download)

DOWNLOAD NOW!


Book Synopsis High-Power Laser Materials Processing by :

Download or read book High-Power Laser Materials Processing written by and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: