Gyrokinetic Simulations of Turbulent Transport in Fusion Plasmas

Download Gyrokinetic Simulations of Turbulent Transport in Fusion Plasmas PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (967 download)

DOWNLOAD NOW!


Book Synopsis Gyrokinetic Simulations of Turbulent Transport in Fusion Plasmas by :

Download or read book Gyrokinetic Simulations of Turbulent Transport in Fusion Plasmas written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the final report for a DOE award that was targeted at understanding and simulating turbulence and transport in plasma fusion devices such as tokamaks.

Turbulent Transport In Magnetized Plasmas (Second Edition)

Download Turbulent Transport In Magnetized Plasmas (Second Edition) PDF Online Free

Author :
Publisher : #N/A
ISBN 13 : 9813225904
Total Pages : 522 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Transport In Magnetized Plasmas (Second Edition) by : C Wendell Horton, Jr

Download or read book Turbulent Transport In Magnetized Plasmas (Second Edition) written by C Wendell Horton, Jr and published by #N/A. This book was released on 2017-07-21 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a few seconds with large machines, scientists and engineers have now created the fusion power of the stars in the laboratory and at the same time find the rich range of complex turbulent electromagnetic waves that transport the plasma confinement systems. The turbulent transport mechanisms created in the laboratory are explained in detail in the second edition of 'Turbulent Transport in Magnetized Plasmas' by Professor Horton.The principles and properties of the major plasma confinement machines are explored with basic physics to the extent currently understood. For the observational laws that are not understood — the empirical confinement laws — offering challenges to the next generation of plasma students and researchers — are explained in detail. An example, is the confinement regime — called the 'I-mode' — currently a hot topic — is explored.Numerous important problems and puzzles for the next generation of plasma scientists are explained. There is growing demand for new simulation codes utilizing the massively parallel computers with MPI and GPU methods. When the 20 billion dollar ITER machine is tested in the 2020ies, new theories and faster/smarter computer simulations running in near real-time control systems will be used to control the burning hydrogen plasmas.

Center for Gyrokinetic Particle Simulations of Turbulent Transport in Burning Plasmas

Download Center for Gyrokinetic Particle Simulations of Turbulent Transport in Burning Plasmas PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Center for Gyrokinetic Particle Simulations of Turbulent Transport in Burning Plasmas by :

Download or read book Center for Gyrokinetic Particle Simulations of Turbulent Transport in Burning Plasmas written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the Final Technical Report for University of Colorado's portion of the SciDAC project 'Center for Gyrokinetic Particle Simulation of Turbulent Transport.' This is funded as a multi-institutional SciDAC Center and W.W. Lee at the Princeton Plasma Physics Laboratory is the lead Principal Investigator. Scott Parker is the local Principal Investigator for University of Colorado and Yang Chen is a Co-Principal Investigator. This is Cooperative Agreement DE-FC02-05ER54816. Research personnel include Yang Chen (Senior Research Associate), Jianying Lang (Graduate Research Associate, Ph. D. Physics Student) and Scott Parker (Associate Professor). Research includes core microturbulence studies of NSTX, simulation of trapped electron modes, development of efficient particle-continuum hybrid methods and particle convergence studies of electron temperature gradient driven turbulence simulations. Recently, the particle-continuum method has been extended to five-dimensions in GEM. We find that actually a simple method works quite well for the Cyclone base case with either fully kinetic or adiabatic electrons. Particles are deposited on a 5D phase-space grid using nearest-grid-point interpolation. Then, the value of delta-f is reset, but not the particle's trajectory. This has the effect of occasionally averaging delta-f of nearby (in the phase space) particles. We are currently trying to estimate the dissipation (or effective collision operator). We have been using GEM to study turbulence and transport in NSTX with realistic equilibrium density and temperature profiles, including impurities, magnetic geometry and ExB shear flow. Greg Rewoldt, PPPL, has developed a TRANSP interface for GEM that specifies the equilibrium profiles and parameters needed to run realistic NSTX cases. Results were reported at the American Physical Society - Division of Plasma Physics, and we are currently running convergence studies to ensure physical results. We are also studying the effect of parallel shear flows, which can be quite strong in NSTX. Recent long-time simulations of electron temperature gradient driven turbulence, show that zonal flows slowly grow algebraically via the Rosenbluth-Hinton random walk mechanism. Eventually, the zonal flow gets to a level where it shear suppresses the turbulence. We have demonstrated this behavior with Cyclone base-case parameters, except with a 30% lower temperature gradient. We can demonstrate the same phenomena at higher gradients, but so far, have been unable to get a converged result at the higher temperature gradient. We find that electron ion collisions cause the zonal flows to grow at a slower rate and results in a higher heat flux. So, far all ETG simulations that come to a quasi-steady state show continued build up of zonal flow, see it appears to be a universal phenomena (for ETG). Linear and nonlinear simulations of Collisional and Collisionless trapped electron modes are underway. We find that zonal flow is typically important. We can, however, reproduce the Tannert and Jenko result (that zonal flow is unimportant) using their parameters with the electron temperature three times the ion temperature. For a typical weak gradient core value of density gradient and no temperature gradient, the CTEM is dominant. However, for a steeper density gradient (and still no temperature gradient), representative of the edge, higher k drift-waves are dominant. For the weaker density gradient core case, nonlinear simulations using GEM are routine. For the steeper gradient edge case, the nonlinear fluctuations are very high and a stationary state has not been obtained. This provides motivation for the particle-continuum algorithm. We also note that more physics, e.g. profile variation and equilibrium ExB shear flow should be significantly stabilizing, making such simulations feasible using standard delta-f techniques. This research is ongoing.

Gyrokinetic Simulations of Turbulent Impurity Transport in Tokamaks

Download Gyrokinetic Simulations of Turbulent Impurity Transport in Tokamaks PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (965 download)

DOWNLOAD NOW!


Book Synopsis Gyrokinetic Simulations of Turbulent Impurity Transport in Tokamaks by : Pierre Manas

Download or read book Gyrokinetic Simulations of Turbulent Impurity Transport in Tokamaks written by Pierre Manas and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding impurity transport in the core of tokamak plasmas is central to achieving controlled fusion. Indeed impurities are ubiquitous in these devices and their presence in the core are detrimental to plasma confinement (fuel dilution, Bremsstrahlung). Recently, specific attention was given to the convective mechanism related to the gradient of the toroidal rotation to explain experimental flat/hollow impurity profiles in the plasma core. In this thesis, up-to-date modelling tools (NEO for neoclassical transport and GKW for turbulent transport) including the impact of toroidal rotation are used to study both the neoclassical and turbulent contributions to impurity fluxes. A comparison of the experimental and modelled carbon density peaking factor (R/LnC) is performed for a large number of baseline and hybrid H-mode plasmas (increased confinement regimes) with modest to high toroidal rotation from the European tokamak JET. Confrontation of experimental and modelled carbon peaking factor yields two main results. First roto-diffusion is found to have a nonnegligible impact on the carbon peaking factor at high values of the toroidal rotation frequency gradient. Second, there is a tendency to overpredict the experimental R/LnC in the core inner region where the carbon density profiles are hollow. This disagreement between experimental and modelled R/LnC, closely related to the collisionality, is also observed for the momentum transport channel which hints at a common parallel symmetry breaking mechanism lacking in the simulations.

Aspects of Anomalous Transport in Plasmas

Download Aspects of Anomalous Transport in Plasmas PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781420034684
Total Pages : 498 pages
Book Rating : 4.0/5 (346 download)

DOWNLOAD NOW!


Book Synopsis Aspects of Anomalous Transport in Plasmas by : Radu Balescu

Download or read book Aspects of Anomalous Transport in Plasmas written by Radu Balescu and published by CRC Press. This book was released on 2005-04-01 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Anomalous transport is a ubiquitous phenomenon in astrophysical, geophysical and laboratory plasmas; and is a key topic in controlled nuclear fusion research. Despite its fundamental importance and ongoing research interest, a full understanding of anomalous transport in plasmas is still incomplete, due to the complexity of the nonlinear phenomena involved. Aspects in Anomalous Transport in Plasmas is the first book to systematically consider anomalous plasma transport theory and provides a unification of the many theoretical models by emphasizing interrelations between seemingly different methodologies. It is not intended as a catalogue of the vast number of plasma instabilities leading to anomalous transport; instead it chooses a number of these and emphasizes the aspects specifically due to turbulence. After a brief introduction, the microscopic theory of turbulence is discussed, including quasilinear theory and various aspects of renormalization methods, which leads to an understanding of resonance broadening, mode coupling, trajectory correlation and clumps. The second half of the book is devoted to stochiastic tramsport, using methods based on the Langevin equations and on Random Walk theory. This treatment aims at going beyond the traditional limits of weak turbulence, by introducing the recently developed method of decorrelation trajectories, and its application to electrostatic turbulence, magnetic turbulence and zonal flow generation. The final chapter includes very recent work on the nonlocal transport phenomenon.

Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

Download Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (953 download)

DOWNLOAD NOW!


Book Synopsis Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas by :

Download or read book Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of the turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, "Validation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).

Advances in Quasilinear Gyrokinetic Modeling of Turbulent Transport

Download Advances in Quasilinear Gyrokinetic Modeling of Turbulent Transport PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 312 pages
Book Rating : 4.:/5 (124 download)

DOWNLOAD NOW!


Book Synopsis Advances in Quasilinear Gyrokinetic Modeling of Turbulent Transport by : Cole Darin Stephens

Download or read book Advances in Quasilinear Gyrokinetic Modeling of Turbulent Transport written by Cole Darin Stephens and published by . This book was released on 2021 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The quest to harness fusion energy requires the successful modeling of plasma turbulence and transport in magnetic confinement devices. For such modeling, the requisite length and time scales span many orders of magnitude. Integrated modeling approaches are constructed to account for the wide range of physics involved in turbulent transport by coupling separate physical models together. The primary physical models used in this work are kinetic and designed to simulate microturbulence on the smallest scales associated with turbulent transport. However, high precision nonlinear kinetic simulations often cannot be easily coupled to integrated modeling suites due to the extreme computational costs that would be involved. Model reduction which drastically reduces the computational complexity of the problem is therefore necessary. One must of course ensure that the reduced model does not severely diminish the accuracy of the calculation; the model reduction itself must be founded on more exact computational approaches as well as fundamental theoretical principles. One of the most successful approaches in model reduction is quasilinear gyrokinetics. There are two fundamental assumptions for the quasilinear model examined in this work. First, the three adiabatic invariants (the magnetic moment, the longitudinal invariant, and the poloidal flux) must be appropriately conserved and their associated single charged particle motions (the gyromotion, the bounce-transit motion, and the toroidal drift motion) must be characterized accurately. Second, the quasilinear approximation must hold such that the coherent linear response is adequate enough to compute the quasilinear fluxes without full calculation of the nonlinear physics. The particular model used, QuaLiKiz, has been proven successful in reproducing local gyrokinetic fluxes in the tokamak core while remaining computationally tractable. There are three primary goals of this dissertation project. The first is to examine the fundamental physics underlying gyrokinetic and reduced model approaches at the single charged particle scale. To achieve this goal, we examine the assumption of magnetic moment invariance in a wide variety of electromagnetic fields. We successfully identify the dimensionless parameters that determine magnetic moment conservation in each scenario and then proceed to quantify the degree to which magnetic moment conservation is broken. In doing so, we confirm that the magnetic moment is sufficiently conserved for a wide range of regimes relevant to tokamak plasmas. In addition, we derive new analytic formulas for quantities associated with bounce-transit motion in circular tokamak fields. We compare these new, more exact calculations to approximations commonly used in reduced models (including QuaLiKiz) and determine the conditions such that the approximations break down. We then also confirm that the approximations are valid in the tokamak core for conventional, large aspect ratio devices. The second goal of this dissertation project is to rederive and compile the model equations for QuaLiKiz from first principles. Over the years of QuaLiKiz's development, there has never been a complete manuscript that sketches the derivation of QuaLiKiz from start to finish. The lack of such a document makes it difficult to extend the physics of QuaLiKiz to new parameter regimes of interest. Various possible extensions such as including electromagnetic effects or more realistic tokamak geometries require the adjustment of several different assumptions that would affect the derivation in key ways. As such, correct implementations of new physics would require an existing derivation as a reference point lest the implementation be handled in an incoherent fashion. In addition, a step-by-step outline of how each assumption of QuaLiKiz affects the derivation can be helpful in determining which assumptions can be relaxed for a more accurate model. The successful completion of this derivation, included in this dissertation, will be immensely useful for future QuaLiKiz improvement and validation. With the derivation in hand, we proceed to the third goal of this project: improving the collisional model of QuaLiKiz. Collisions play an essential role in characterizing the transport associated with trapped electron modes. It has become evident in recent studies that the collisional model in QuaLiKiz requires improvement; in integrated modeling, the imprecise treatment of collisional trapped electron modes leads to incorrect density profile predictions near the tokamak core for highly collisional regimes. We revisit the collision model implemented in QuaLiKiz and use the more exact gyrokinetic code GENE (Gyrokinetic Electromagnetic Numerical Experiment) to make improvements to QuaLiKiz's collision operator. We then use the new version of QuaLiKiz in integrated modeling to compare density profiles predicted by the old and new collision operators. We confirm that the new collision operator leads to density profiles that more accurately match the experimental profiles.

Modeling the Turbulent Momentum Transport in Tokamak Plasmas

Download Modeling the Turbulent Momentum Transport in Tokamak Plasmas PDF Online Free

Author :
Publisher : LAP Lambert Academic Publishing
ISBN 13 : 9783659411038
Total Pages : 128 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Modeling the Turbulent Momentum Transport in Tokamak Plasmas by : Pierre Cottier

Download or read book Modeling the Turbulent Momentum Transport in Tokamak Plasmas written by Pierre Cottier and published by LAP Lambert Academic Publishing. This book was released on 2014-04-01 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: The magnetic confinement in tokamaks is for now the most advanced way towards energy production by nuclear fusion. Both theoretical and experimental studies showed that rotation generation can increase its performance by reducing the turbulent transport in tokamak plasmas. The rotation influence on the heat and particle fluxes is studied along with the angular momentum transport with the quasi-linear gyro-kinetic eigenvalue code QuaLiKiz. For this purpose, the QuaLiKiz code is modified in order to take the plasma rotation into account and compute the angular momentum flux. It is shown that QuaLiKiz framework is able to correctly predict the angular momentum flux including the ExB shear induced residual stress as well as the influence of rotation on the heat and particle fluxes. The different contributions to the turbulent momentum flux are studied and successfully compared against both non-linear gyro-kinetic simulations and experimental data.

Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report

Download Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report by :

Download or read book Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this project is the development of the Gyrokinetic Toroidal Code (GTC) Framework and its applications to problems related to the physics of turbulence and turbulent transport in tokamaks, . The project involves physics studies, code development, noise effect mitigation, supporting computer science efforts, diagnostics and advanced visualizations, verification and validation. Its main scientific themes are mesoscale dynamics and non-locality effects on transport, the physics of secondary structures such as zonal flows, and strongly coherent wave-particle interaction phenomena at magnetic precession resonances. Special emphasis is placed on the implications of these themes for rho-star and current scalings and for the turbulent transport of momentum. GTC-TTBP also explores applications to electron thermal transport, particle transport; ITB formation and cross-cuts such as edge-core coupling, interaction of energetic particles with turbulence and neoclassical tearing mode trigger dynamics. Code development focuses on major initiatives in the development of full-f formulations and the capacity to simulate flux-driven transport. In addition to the full-f -formulation, the project includes the development of numerical collision models and methods for coarse graining in phase space. Verification is pursued by linear stability study comparisons with the FULL and HD7 codes and by benchmarking with the GKV, GYSELA and other gyrokinetic simulation codes. Validation of gyrokinetic models of ion and electron thermal transport is pursed by systematic stressing comparisons with fluctuation and transport data from the DIII-D and NSTX tokamaks. The physics and code development research programs are supported by complementary efforts in computer sciences, high performance computing, and data management.

Self-organized Turbulent Transport in Fusion Plasmas

Download Self-organized Turbulent Transport in Fusion Plasmas PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 154 pages
Book Rating : 4.:/5 (965 download)

DOWNLOAD NOW!


Book Synopsis Self-organized Turbulent Transport in Fusion Plasmas by : Claudia Norscini

Download or read book Self-organized Turbulent Transport in Fusion Plasmas written by Claudia Norscini and published by . This book was released on 2015 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transport barriers (TB) are a key element in controlling turbulent transport and achieving high performance burning plasmas. Theoretical studies are addressing the turbulence self-regulation as a possible explanation for transport barrier formation but a complete understanding of such complex dynamics is still missing. In this context, we address self-organized turbulent transport in fusion plasmas with the aim of presenting a novel understanding of transport barriers dynamics. The numerical tools we use span simulations from the most complex gyrokinetic turbulence to simpler 2D fluid turbulence and predator-prey like models.Two features of self-organizations, avalanches and zonal flows (ZFs), appear to control large scale transport. In the SOL (Scrape Off Layer) , intermittent avalanche events do not allow for time or space scale separation between mean fields and fluctuation terms. In the edge, the generation of long living double shear layers in the profiles of the velocity reduces radial turbulent transport. Such radially distributed barriers govern profile corrugations. A 2D turbulent model for pedestal generation, which is not specific of Tokamak plasmas, has been developed, the pedestal being localized at the interface between regions with different zonal flow damping: the edge region, where zonal flows are weakly damped by collisions, and the SOL region characterized by zonal flow damping due to boundary conditions. Quasi-periodic relaxation events are studied reducing the model to three modes coupling to identify the interplay between streamers and ZFs and the role of Reynolds stress in the generation and saturation of TBs.

Fluctuations and Transport in Fusion Plasmas. Final Report

Download Fluctuations and Transport in Fusion Plasmas. Final Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 20 pages
Book Rating : 4.:/5 (685 download)

DOWNLOAD NOW!


Book Synopsis Fluctuations and Transport in Fusion Plasmas. Final Report by :

Download or read book Fluctuations and Transport in Fusion Plasmas. Final Report written by and published by . This book was released on 1995 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: The energy confinement in tokamaks in thought to be limited by transport caused by plasma turbulence. Three dimensional plasma particle-in-cell (PIC) codes are used to model the turbulent transport in tokamaks to attempt to understand this phenomena so that tokamaks can be made more efficient. Presently, hundreds of hours of Cray time are used to model these experiments and much bigger and longer runs are desired, to model a large tokamak with realistic parameters is beyond the capability of existing sequential supercomputers. Parallel supercomputers might be a cost effect tool for performing such large scale 3D tokamak simulations. The goal of the work was to develop algorithms for performing PIC codes on coarse-grained message passing parallel computers and to evaluate the performance of such parallel computers on PIC codes. This algorithm would be used in a large scale PIC production code such as the UCLA 3D gyrokinetic code.

Gyrokinetic Simulations of Turbulence in the Near-edge of Fusion Plasmas

Download Gyrokinetic Simulations of Turbulence in the Near-edge of Fusion Plasmas PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 163 pages
Book Rating : 4.:/5 (111 download)

DOWNLOAD NOW!


Book Synopsis Gyrokinetic Simulations of Turbulence in the Near-edge of Fusion Plasmas by : Tom Neiser

Download or read book Gyrokinetic Simulations of Turbulence in the Near-edge of Fusion Plasmas written by Tom Neiser and published by . This book was released on 2019 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this thesis is the validation of the gyrokinetic method in the near-edge region of L-mode plasmas. Our primary finding is that gyrokinetic simulations are able to match the heat-flux in the near-edge region of an L-mode plasma at = 0.80 and = 0.90 within the combined statistical and systematic uncertainty of the experiment at the 1.6 and 1.3 levels, respectively. At = 0.95, gyrokinetic simulations are able to match the total experimental heat flux with nominal experimental parameters. In the big picture, this successful validation exercise helps push the gyrokinetic validation frontier closer to the L-mode edge region. In the course of this validation study, we make three secondary findings that may be helpful to the fusion community. First, the current heuristic rules for the relevance of multi-scale effects appear to be on the cautious side. Multi-scale simulations at = 0.80 suggest that single-scale simulations can be sufficient in a scenario when multi-scale effects are expected. This is helpful, because it could increase the realm of applicability of single-scale simulations, which are computationally more affordable than multi-scale simulations. Second, the effect of edge E B shear is found to become important already in the near-edge (at = 0.90) rather than at larger radial positions. This was unexpected and is relevant for future simulations in the near-edge. Third, nonlinear simulations at = 0.90 find a hybrid ion temperature gradient (ITG)/ trapped electron mode (TEM) scenario, which was not obvious from linear simulations due to the stability of ITG modes. This could also be an important result for spherical tokamaks, where ITG modes are more often linearly stable than in conventional tokamaks.

Kinetic Simulation of Edge Instability in Fusion Plasmas

Download Kinetic Simulation of Edge Instability in Fusion Plasmas PDF Online Free

Author :
Publisher :
ISBN 13 : 9781321995824
Total Pages : 103 pages
Book Rating : 4.9/5 (958 download)

DOWNLOAD NOW!


Book Synopsis Kinetic Simulation of Edge Instability in Fusion Plasmas by : Daniel Patrick Fulton

Download or read book Kinetic Simulation of Edge Instability in Fusion Plasmas written by Daniel Patrick Fulton and published by . This book was released on 2015 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, gyrokinetic simulations in edge plasmas of both tokamaks and field reversed configurations (FRC) have been carried out using the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC) has been formulated for cross-separatrix FRC simulation. In the tokamak edge, turbulent transport in the pedestal of an H-mode DIII-D plasma is studied via simulations of electrostatic driftwaves. Annulus geometry is used and simulations focus on two radial locations corresponding to the pedestal top with mild pressure gradient and steep pressure gradient. A reactive trapped electron instability with typical ballooning mode structure is excited in the pedestal top. At the steep gradient, the electrostatic instability exhibits unusual mode structure, peaking at poloidal angles theta=+- pi/2. Simulations find this unusual mode structure is due to steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Realistic DIII-D geometry has a stabilizing effect compared to a simple circular tokamak geometry. Driftwave instability in FRC is studied for the first time using gyrokinetic simulation. GTC is upgraded to treat realistic equilibrium calculated by an MHD equilibrium code. Electrostatic local simulations in outer closed flux surfaces find ion-scale modes are stable due to the large ion gyroradius and that electron drift-interchange modes are excited by electron temperature gradient and bad magnetic curvature. In the scrape-off layer (SOL) ion-scale modes are excited by density gradient and bad curvature. Collisions have weak effects on instabilities both in the core and SOL. Simulation results are consistent with density fluctuation measurements in the C-2 experiment using Doppler backscattering (DBS). The critical density gradients measured by the DBS qualitatively agree with the linear instability threshold calculated by GTC simulations. One outstanding critical issue in the FRC is the interplay between turbulence in the FRC core and SOL regions. While the magnetic flux coordinates used by GTC provide a number of computational advantages, they present unique challenges at the magnetic field separatrix. To address this limitation, a new code, capable of coupled core-SOL simulations, is formulated, implemented, and successfully verified.

Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasma

Download Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasma PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasma by :

Download or read book Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasma written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The UCLA work on this grant was to design and help implement an object-oriented version of the GTC code, which is written in Fortran90. The GTC code is the main global gyrokinetic code used in this project, and over the years multiple, incompatible versions have evolved. The reason for this effort is to allow multiple authors to work together on GTC and to simplify future enhancements to GTC. The effort was designed to proceed incrementally. Initially, an upper layer of classes (derived types and methods) was implemented which called the original GTC code 'under the hood.' The derived types pointed to data in the original GTC code, and the methods called the original GTC subroutines. The original GTC code was modified only very slightly. This allowed one to define (and refine) a set of classes which described the important features of the GTC code in a new, more abstract way, with a minimum of implementation. Furthermore, classes could be added one at a time, and at the end of the each day, the code continued to work correctly. This work was done in close collaboration with Y. Nishimura from UC Irvine and Stefan Ethier from PPPL. Ten classes were ultimately defined and implemented: gyrokinetic and drift kinetic particles, scalar and vector fields, a mesh, jacobian, FLR, equilibrium, interpolation, and particles species descriptors. In the second state of this development, some of the scaffolding was removed. The constructors in the class objects now allocated the data and the array data in the original GTC code was removed. This isolated the components and now allowed multiple instantiations of the objects to be created, in particular, multiple ion species. Again, the work was done incrementally, one class at a time, so that the code was always working properly. This work was done in close collaboration with Y. Nishimura and W. Zhang from UC Irvine and Stefan Ethier from PPPL. The third stage of this work was to integrate the capabilities of the various versions of the GTC code into one flexible and extensible version. To do this, we developed a methodology to implement Design Patterns in Fortran90. Design Patterns are abstract solutions to generic programming problems, which allow one to handle increased complexity. This work was done in collaboration with Henry Gardner, a computer scientist (and former plasma physicist) from the Australian National University. As an example, the Strategy Pattern is being used in GTC to support multiple solvers. This new code is currently being used in the study of energetic particles. A document describing the evolution of the GTC code to this new object-oriented version is available to users of GTC.

Final Report on Work for Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas -- Tools for Improved Data Logistics

Download Final Report on Work for Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas -- Tools for Improved Data Logistics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Final Report on Work for Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas -- Tools for Improved Data Logistics by :

Download or read book Final Report on Work for Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas -- Tools for Improved Data Logistics written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This project focused on the use of Logistical Networking technology to address the challenges involved in rapid sharing of data from the the Center's gyrokinetic particle simulations, which can be on the order of terabytes per time step, among researchers at a number of geographically distributed locations. There is a great need to manage data on this scale in a flexible manner, with simulation code, file system, database and visualization functions requiring access. The project used distributed data management infrastructure based on Logistical Networking technology to address these issues in a way that maximized interoperability and achieved the levels of performance the required by the Center's application community. The work focused on the development and deployment of software tools and infrastructure for the storage and distribution of terascale datasets generated by simulations running at the National Center for Computational Science at Oak Ridge National Laboratory.

Turbulent Particle Transport in H-Mode Plasmas on Diii-D

Download Turbulent Particle Transport in H-Mode Plasmas on Diii-D PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 171 pages
Book Rating : 4.:/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Particle Transport in H-Mode Plasmas on Diii-D by : Xin Wang

Download or read book Turbulent Particle Transport in H-Mode Plasmas on Diii-D written by Xin Wang and published by . This book was released on 2016 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle transport is an important topic in plasma physics. It determines the density profile of a burning plasma within a tokamak a magnetic confinement device. Microscopic turbulent particle transport is two orders of magnitude larger than other transport mechanisms for electrons and small ions. In order to confine a plasma in a tokamak with a core density that exceeds the fusion criteria, it is essential to study turbulent particle transport. This thesis investigates how different plasma parameters such as the toroidal rotation and microscopic instabilities affect turbulent particle transport in the DIII-D tokamak. First, we show how toroidal rotation can indirectly affect particle transport, through its contribution to the radial electric field and thus the E B shearing rate. The plasma discharge which has best confinement is the one whose E B shearing rate is larger than or at least similar to the growth rates that drive turbulent transport at the plasma edge. Second, for the first time on DIII-D, we observe a correlation between electron density gradient and instability mode frequency in the plasma core. We find that, when the turbulence is driven by the ion temperature gradient (ITG), the local density gradient increases as the the absolute frequency of the dominant unstable mode decreases. Once the dominant unstable mode switches over to the trapped electron mode (TEM) regime, the local density gradient decreases again. As a result the density gradient reaches a maximum when the mode has zero frequency, which is corresponds to the cross over from ITG to TEM. This correlation opens a new opportunity for future large burning plasma devices such as ITER to increase the core density by controlling the turbulence regime. Finally, we show that, in low density regime, a reduction in core density is observed when electron cyclotron heating (ECH) is applied. This reduction is not the result of a change in turbulence regime nor the result of a change in the density gradient in the core. Through detailed time-dependent experimental analysis, linear gyro-kinetic simulations, and comparison to turbulence measurements we show that this reduction in core density is the result of an increase in turbulence drive at the plasma edge.

The Dimits Shift in More Realistic Gyrokinetic Plasma Turbulence Simulations

Download The Dimits Shift in More Realistic Gyrokinetic Plasma Turbulence Simulations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 325 pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis The Dimits Shift in More Realistic Gyrokinetic Plasma Turbulence Simulations by :

Download or read book The Dimits Shift in More Realistic Gyrokinetic Plasma Turbulence Simulations written by and published by . This book was released on 2008 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: In simulations of turbulent plasma transport due to long wavelength, (k(up tack)pi (less-than or equal to) 1), electrostatic drift-type instabilities we find that a nonlinear upshift of the effective threshold persists. This 'Dimits shift' represents the difference between the linear threshold, at the onset of instability, and the nonlinear threshold, where transport increases suddenly as the driving temperature gradient is increased. As the drive increases, the magnitudes of turbulent eddies and zonal ows grow until the zonal flows become nonlinearly unstable to 'tertiary' modes and their sheared ows no longer grow fast enough to strongly limit eddy size. The tertiary mode threshold sets the effective nonlinear threshold for the heat transport, and the Dimits shift arises when this occurs at a zonal flow magnitude greater than that needed to limit transport near the linear threshold. Nextgeneration tokamaks will likely benefit from the higher effective threshold for turbulent transport, and transport models should incorporate suitable corrections to linear thresholds. These gyrokinetic simulations are more realistic than previous reports of a Dimits shift because they include nonadiabatic electron dynamics, strong collisional damping of zonal flows, and finite electron and ion collisionality together with realistic shaped magnetic geometry. Reversing previously reported results based on idealized adiabatic electrons, we find that increasing collisionality reduces the heat flux because collisionality reduces the nonadiabatic electron drive.