Groups of Homotopy Classes

Download Groups of Homotopy Classes PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540349685
Total Pages : 39 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Groups of Homotopy Classes by : M. Arkowitz

Download or read book Groups of Homotopy Classes written by M. Arkowitz and published by Springer. This book was released on 2006-12-08 with total page 39 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many of the sets that one encounters in homotopy classification problems have a natural group structure. Among these are the groups [A, nX] of homotopy classes of maps of a space A into a loop-space nx. Other examples are furnished by the groups (̃y) of homotopy classes of homotopy equivalences of a space Y with itself. The groups [A, nX] and (̃Y) are not necessarily abelian. It is our purpose to study these groups using a numerical invariant which can be defined for any group. This invariant, called the rank of a group, is a generalisation of the rank of a finitely generated abelian group. It tells whether or not the groups considered are finite and serves to distinguish two infinite groups. We express the rank of subgroups of [A, nX] and of C(Y) in terms of rational homology and homotopy invariants. The formulas which we obtain enable us to compute the rank in a large number of concrete cases. As the main application we establish several results on commutativity and homotopy-commutativity of H-spaces. Chapter 2 is purely algebraic. We recall the definition of the rank of a group and establish some of its properties. These facts, which may be found in the literature, are needed in later sections. Chapter 3 deals with the groups [A, nx] and the homomorphisms f*: [B, nl̃ ̃[A, nx] induced by maps f: A ̃B. We prove a general theorem on the rank of the intersection of coincidence subgroups (Theorem 3. 3).

Commutator Calculus and Groups of Homotopy Classes

Download Commutator Calculus and Groups of Homotopy Classes PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521284244
Total Pages : 169 pages
Book Rating : 4.5/5 (212 download)

DOWNLOAD NOW!


Book Synopsis Commutator Calculus and Groups of Homotopy Classes by : Hans J. Baues

Download or read book Commutator Calculus and Groups of Homotopy Classes written by Hans J. Baues and published by Cambridge University Press. This book was released on 1981-11-05 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fundamental problem of algebraic topology is the classification of homotopy types and homotopy classes of maps. In this work the author extends results of rational homotopy theory to a subring of the rationale. The methods of proof employ classical commutator calculus of nilpotent group and Lie algebra theory and rely on an extensive and systematic study of the algebraic properties of the classical homotopy operations (composition and addition of maps, smash products, Whitehead products and higher order James-Hopi invariants). The account is essentially self-contained and should be accessible to non-specialists and graduate students with some background in algebraic topology and homotopy theory.

Categorical Homotopy Theory

Download Categorical Homotopy Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139952633
Total Pages : 371 pages
Book Rating : 4.1/5 (399 download)

DOWNLOAD NOW!


Book Synopsis Categorical Homotopy Theory by : Emily Riehl

Download or read book Categorical Homotopy Theory written by Emily Riehl and published by Cambridge University Press. This book was released on 2014-05-26 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.

Topology of Lie Groups

Download Topology of Lie Groups PDF Online Free

Author :
Publisher :
ISBN 13 : 9780821813423
Total Pages : 451 pages
Book Rating : 4.8/5 (134 download)

DOWNLOAD NOW!


Book Synopsis Topology of Lie Groups by : American Mathematical Society

Download or read book Topology of Lie Groups written by American Mathematical Society and published by . This book was released on 2000-08-18 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Nilpotence and Periodicity in Stable Homotopy Theory

Download Nilpotence and Periodicity in Stable Homotopy Theory PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691025728
Total Pages : 228 pages
Book Rating : 4.0/5 (257 download)

DOWNLOAD NOW!


Book Synopsis Nilpotence and Periodicity in Stable Homotopy Theory by : Douglas C. Ravenel

Download or read book Nilpotence and Periodicity in Stable Homotopy Theory written by Douglas C. Ravenel and published by Princeton University Press. This book was released on 1992-11-08 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.

Algebraic Topology from a Homotopical Viewpoint

Download Algebraic Topology from a Homotopical Viewpoint PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387224890
Total Pages : 499 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Topology from a Homotopical Viewpoint by : Marcelo Aguilar

Download or read book Algebraic Topology from a Homotopical Viewpoint written by Marcelo Aguilar and published by Springer Science & Business Media. This book was released on 2008-02-02 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors present introductory material in algebraic topology from a novel point of view in using a homotopy-theoretic approach. This carefully written book can be read by any student who knows some topology, providing a useful method to quickly learn this novel homotopy-theoretic point of view of algebraic topology.

Complex Cobordism and Stable Homotopy Groups of Spheres

Download Complex Cobordism and Stable Homotopy Groups of Spheres PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082182967X
Total Pages : 418 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Complex Cobordism and Stable Homotopy Groups of Spheres by : Douglas C. Ravenel

Download or read book Complex Cobordism and Stable Homotopy Groups of Spheres written by Douglas C. Ravenel and published by American Mathematical Soc.. This book was released on 2003-11-25 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.

Groups of Homotopy Spheres, I

Download Groups of Homotopy Spheres, I PDF Online Free

Author :
Publisher :
ISBN 13 : 9781021177575
Total Pages : 0 pages
Book Rating : 4.1/5 (775 download)

DOWNLOAD NOW!


Book Synopsis Groups of Homotopy Spheres, I by : M. A. Kervaire

Download or read book Groups of Homotopy Spheres, I written by M. A. Kervaire and published by . This book was released on 2023-07-18 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

A Concise Course in Algebraic Topology

Download A Concise Course in Algebraic Topology PDF Online Free

Author :
Publisher : University of Chicago Press
ISBN 13 : 9780226511832
Total Pages : 262 pages
Book Rating : 4.5/5 (118 download)

DOWNLOAD NOW!


Book Synopsis A Concise Course in Algebraic Topology by : J. P. May

Download or read book A Concise Course in Algebraic Topology written by J. P. May and published by University of Chicago Press. This book was released on 1999-09 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Model Categories and Their Localizations

Download Model Categories and Their Localizations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821849174
Total Pages : 482 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Model Categories and Their Localizations by : Philip S. Hirschhorn

Download or read book Model Categories and Their Localizations written by Philip S. Hirschhorn and published by American Mathematical Soc.. This book was released on 2003 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to explain modern homotopy theory in a manner accessible to graduate students yet structured so that experts can skip over numerous linear developments to quickly reach the topics of their interest. Homotopy theory arises from choosing a class of maps, called weak equivalences, and then passing to the homotopy category by localizing with respect to the weak equivalences, i.e., by creating a new category in which the weak equivalences are isomorphisms. Quillen defined a model category to be a category together with a class of weak equivalences and additional structure useful for describing the homotopy category in terms of the original category. This allows you to make constructions analogous to those used to study the homotopy theory of topological spaces. A model category has a class of maps called weak equivalences plus two other classes of maps, called cofibrations and fibrations. Quillen's axioms ensure that the homotopy category exists and that the cofibrations and fibrations have extension and lifting properties similar to those of cofibration and fibration maps of topological spaces. During the past several decades the language of model categories has become standard in many areas of algebraic topology, and it is increasingly being used in other fields where homotopy theoretic ideas are becoming important, including modern algebraic $K$-theory and algebraic geometry. All these subjects and more are discussed in the book, beginning with the basic definitions and giving complete arguments in order to make the motivations and proofs accessible to the novice. The book is intended for graduate students and research mathematicians working in homotopy theory and related areas.

Algebraic Topology: An Intuitive Approach

Download Algebraic Topology: An Intuitive Approach PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821810460
Total Pages : 144 pages
Book Rating : 4.8/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Topology: An Intuitive Approach by : Hajime Satō

Download or read book Algebraic Topology: An Intuitive Approach written by Hajime Satō and published by American Mathematical Soc.. This book was released on 1999 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: The single most difficult thing one faces when one begins to learn a new branch of mathematics is to get a feel for the mathematical sense of the subject. The purpose of this book is to help the aspiring reader acquire this essential common sense about algebraic topology in a short period of time. To this end, Sato leads the reader through simple but meaningful examples in concrete terms. Moreover, results are not discussed in their greatest possible generality, but in terms of the simplest and most essential cases. In response to suggestions from readers of the original edition of this book, Sato has added an appendix of useful definitions and results on sets, general topology, groups and such. He has also provided references. Topics covered include fundamental notions such as homeomorphisms, homotopy equivalence, fundamental groups and higher homotopy groups, homology and cohomology, fiber bundles, spectral sequences and characteristic classes. Objects and examples considered in the text include the torus, the Möbius strip, the Klein bottle, closed surfaces, cell complexes and vector bundles.

Topological Library

Download Topological Library PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814401315
Total Pages : 590 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Topological Library by : Serge? Petrovich Novikov

Download or read book Topological Library written by Serge? Petrovich Novikov and published by World Scientific. This book was released on 2012 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: The final volume of the three-volume edition, this book features classical papers on algebraic and differential topology published in 1950-60s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950. That is, from Serre's celebrated "singular homologies of fiber spaces."

Problems on Mapping Class Groups and Related Topics

Download Problems on Mapping Class Groups and Related Topics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821838385
Total Pages : 384 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Problems on Mapping Class Groups and Related Topics by : Benson Farb

Download or read book Problems on Mapping Class Groups and Related Topics written by Benson Farb and published by American Mathematical Soc.. This book was released on 2006-09-12 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.

Modern Classical Homotopy Theory

Download Modern Classical Homotopy Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821852868
Total Pages : 862 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Modern Classical Homotopy Theory by : Jeffrey Strom

Download or read book Modern Classical Homotopy Theory written by Jeffrey Strom and published by American Mathematical Soc.. This book was released on 2011-10-19 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

Stable Homotopy and Generalised Homology

Download Stable Homotopy and Generalised Homology PDF Online Free

Author :
Publisher : University of Chicago Press
ISBN 13 : 0226005240
Total Pages : 384 pages
Book Rating : 4.2/5 (26 download)

DOWNLOAD NOW!


Book Synopsis Stable Homotopy and Generalised Homology by : John Frank Adams

Download or read book Stable Homotopy and Generalised Homology written by John Frank Adams and published by University of Chicago Press. This book was released on 1974 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: J. Frank Adams, the founder of stable homotopy theory, gave a lecture series at the University of Chicago in 1967, 1970, and 1971, the well-written notes of which are published in this classic in algebraic topology. The three series focused on Novikov's work on operations in complex cobordism, Quillen's work on formal groups and complex cobordism, and stable homotopy and generalized homology. Adams's exposition of the first two topics played a vital role in setting the stage for modern work on periodicity phenomena in stable homotopy theory. His exposition on the third topic occupies the bulk of the book and gives his definitive treatment of the Adams spectral sequence along with many detailed examples and calculations in KU-theory that help give a feel for the subject.

Cohomology Operations and Applications in Homotopy Theory

Download Cohomology Operations and Applications in Homotopy Theory PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486466647
Total Pages : 226 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Cohomology Operations and Applications in Homotopy Theory by : Robert E. Mosher

Download or read book Cohomology Operations and Applications in Homotopy Theory written by Robert E. Mosher and published by Courier Corporation. This book was released on 2008-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cohomology operations are at the center of a major area of activity in algebraic topology. This treatment explores the single most important variety of operations, the Steenrod squares. It constructs these operations, proves their major properties, and provides numerous applications, including several different techniques of homotopy theory useful for computation. 1968 edition.

Cubical Homotopy Theory

Download Cubical Homotopy Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107030250
Total Pages : 649 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Cubical Homotopy Theory by : Brian A. Munson

Download or read book Cubical Homotopy Theory written by Brian A. Munson and published by Cambridge University Press. This book was released on 2015-10-06 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern, example-driven introduction to cubical diagrams and related topics such as homotopy limits and cosimplicial spaces.