Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Graph Theory And Feynman Integrals
Download Graph Theory And Feynman Integrals full books in PDF, epub, and Kindle. Read online Graph Theory And Feynman Integrals ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Evaluating Feynman Integrals by : Vladimir A. Smirnov
Download or read book Evaluating Feynman Integrals written by Vladimir A. Smirnov and published by Springer. This book was released on 2005-02-28 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problem of evaluating Feynman integrals over loop momenta has existed from the early days of perturbative quantum field theory. Although a great variety of methods for evaluating Feynman integrals has been developed over a span of more than fifty years, this book is a first attempt to summarize them. Evaluating Feynman Integrals characterizes the most powerful methods, in particular those used for recent, quite sophisticated calculations, and then illustrates them with numerous examples, starting from very simple ones and progressing to nontrivial examples.
Book Synopsis Graph Theory and Feynman Integrals by : Noboru Nakanishi
Download or read book Graph Theory and Feynman Integrals written by Noboru Nakanishi and published by Routledge. This book was released on 1971 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Applications of Algebraic Topology by : S. Lefschetz
Download or read book Applications of Algebraic Topology written by S. Lefschetz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.
Book Synopsis Feynman Motives by : Matilde Marcolli
Download or read book Feynman Motives written by Matilde Marcolli and published by World Scientific. This book was released on 2010 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a OC bottom-upOCO approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of BlochOCoEsnaultOCoKreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, OC top-downOCO approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a RiemannOCoHilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area. Sample Chapter(s). Chapter 1: Perturbative quantum field theory and Feynman diagrams (350 KB). Contents: Perturbative Quantum Field Theory and Feynman Diagrams; Motives and Periods; Feynman Integrals and Algebraic Varieties; Feynman Integrals and GelfandOCoLeray Forms; ConnesOCoKreimer Theory in a Nutshell; The RiemannOCoHilbert Correspondence; The Geometry of DimReg; Renormalization, Singularities, and Hodge Structures; Beyond Scalar Theories. Readership: Graduate students and researchers in mathematical physics and theoretical physics.
Book Synopsis Analytic Tools for Feynman Integrals by : Vladimir A. Smirnov
Download or read book Analytic Tools for Feynman Integrals written by Vladimir A. Smirnov and published by Springer. This book was released on 2013-01-16 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to describe the most powerful methods for evaluating multiloop Feynman integrals that are currently used in practice. This book supersedes the author’s previous Springer book “Evaluating Feynman Integrals” and its textbook version “Feynman Integral Calculus.” Since the publication of these two books, powerful new methods have arisen and conventional methods have been improved on in essential ways. A further qualitative change is the fact that most of the methods and the corresponding algorithms have now been implemented in computer codes which are often public. In comparison to the two previous books, three new chapters have been added: One is on sector decomposition, while the second describes a new method by Lee. The third new chapter concerns the asymptotic expansions of Feynman integrals in momenta and masses, which were described in detail in another Springer book, “Applied Asymptotic Expansions in Momenta and Masses,” by the author. This chapter describes, on the basis of papers that appeared after the publication of said book, how to algorithmically discover the regions relevant to a given limit within the strategy of expansion by regions. In addition, the chapters on the method of Mellin-Barnes representation and on the method of integration by parts have been substantially rewritten, with an emphasis on the corresponding algorithms and computer codes.
Book Synopsis Feynman Integrals by : Stefan Weinzierl
Download or read book Feynman Integrals written by Stefan Weinzierl and published by Springer Nature. This book was released on 2022-06-11 with total page 852 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook on Feynman integrals starts from the basics, requiring only knowledge of special relativity and undergraduate mathematics. Feynman integrals are indispensable for precision calculations in quantum field theory. At the same time, they are also fascinating from a mathematical point of view. Topics from quantum field theory and advanced mathematics are introduced as needed. The book covers modern developments in the field of Feynman integrals. Topics included are: representations of Feynman integrals, integration-by-parts, differential equations, intersection theory, multiple polylogarithms, Gelfand-Kapranov-Zelevinsky systems, coactions and symbols, cluster algebras, elliptic Feynman integrals, and motives associated with Feynman integrals. This volume is aimed at a) students at the master's level in physics or mathematics, b) physicists who want to learn how to calculate Feynman integrals (for whom state-of-the-art techniques and computations are provided), and c) mathematicians who are interested in the mathematical aspects underlying Feynman integrals. It is, indeed, the interwoven nature of their physical and mathematical aspects that make Feynman integrals so enthralling.
Book Synopsis Convexity and Graph Theory by : M. Rosenfeld
Download or read book Convexity and Graph Theory written by M. Rosenfeld and published by Elsevier. This book was released on 1984-01-01 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among the participants discussing recent trends in their respective fields and in areas of common interest in these proceedings are such world-famous geometers as H.S.M. Coxeter, L. Danzer, D.G. Larman and J.M. Wills, and equally famous graph-theorists B. Bollobás, P. Erdös and F. Harary. In addition to new results in both geometry and graph theory, this work includes articles involving both of these two fields, for instance ``Convexity, Graph Theory and Non-Negative Matrices'', ``Weakly Saturated Graphs are Rigid'', and many more. The volume covers a broad spectrum of topics in graph theory, geometry, convexity, and combinatorics. The book closes with a number of abstracts and a collection of open problems raised during the conference.
Book Synopsis Mathematics Unlimited - 2001 and Beyond by : Björn Engquist
Download or read book Mathematics Unlimited - 2001 and Beyond written by Björn Engquist and published by Springer. This book was released on 2017-04-05 with total page 1219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book guaranteed to delight the reader. It not only depicts the state of mathematics at the end of the century, but is also full of remarkable insights into its future de- velopment as we enter a new millennium. True to its title, the book extends beyond the spectrum of mathematics to in- clude contributions from other related sciences. You will enjoy reading the many stimulating contributions and gain insights into the astounding progress of mathematics and the perspectives for its future. One of the editors, Björn Eng- quist, is a world-renowned researcher in computational sci- ence and engineering. The second editor, Wilfried Schmid, is a distinguished mathematician at Harvard University. Likewi- se the authors are all foremost mathematicians and scien- tists, and their biographies and photographs appear at the end of the book. Unique in both form and content, this is a "must-read" for every mathematician and scientist and, in particular, for graduates still choosing their specialty. Limited collector's edition - an exclusive and timeless work. This special, numbered edition will be available until June 1, 2000. Firm orders only.
Book Synopsis Algebraic Graph Theory by : Ulrich Knauer
Download or read book Algebraic Graph Theory written by Ulrich Knauer and published by Walter de Gruyter. This book was released on 2011-09-29 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures – like roads, computers, telephones – instances of abstract data structures – like lists, stacks, trees – and functional or object oriented programming. In turn, graphs are models for mathematical objects, like categories and functors. This highly self-contained book about algebraic graph theory is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. It ends with a challenging chapter on the topological question of embeddability of Cayley graphs on surfaces.
Book Synopsis Feynman Integral Calculus by : Vladimir A. Smirnov
Download or read book Feynman Integral Calculus written by Vladimir A. Smirnov and published by Springer Science & Business Media. This book was released on 2006-11-15 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the book is to summarize those methods for evaluating Feynman integrals that have been developed over a span of more than fifty years. The book characterizes the most powerful methods and illustrates them with numerous examples starting from very simple ones and progressing to nontrivial examples. The book demonstrates how to choose adequate methods and combine evaluation methods in a non-trivial way. The most powerful methods are characterized and then illustrated through numerous examples. This is an updated textbook version of the previous book (Evaluating Feynman integrals, STMP 211) of the author.
Book Synopsis Feynman Amplitudes, Periods and Motives by : Luis Álvarez-Cónsul
Download or read book Feynman Amplitudes, Periods and Motives written by Luis Álvarez-Cónsul and published by American Mathematical Soc.. This book was released on 2015-09-24 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the International Research Workshop on Periods and Motives--A Modern Perspective on Renormalization, held from July 2-6, 2012, at the Instituto de Ciencias Matemáticas, Madrid, Spain. Feynman amplitudes are integrals attached to Feynman diagrams by means of Feynman rules. They form a central part of perturbative quantum field theory, where they appear as coefficients of power series expansions of probability amplitudes for physical processes. The efficient computation of Feynman amplitudes is pivotal for theoretical predictions in particle physics. Periods are numbers computed as integrals of algebraic differential forms over topological cycles on algebraic varieties. The term originated from the period of a periodic elliptic function, which can be computed as an elliptic integral. Motives emerged from Grothendieck's "universal cohomology theory", where they describe an intermediate step between algebraic varieties and their linear invariants (cohomology). The theory of motives provides a conceptual framework for the study of periods. In recent work, a beautiful relation between Feynman amplitudes, motives and periods has emerged. The articles provide an exciting panoramic view on recent developments in this fascinating and fruitful interaction between pure mathematics and modern theoretical physics.
Book Synopsis Graphs in Perturbation Theory by : Michael Borinsky
Download or read book Graphs in Perturbation Theory written by Michael Borinsky and published by Springer. This book was released on 2018-11-04 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first systematic study of graphical enumeration and the asymptotic algebraic structures in perturbative quantum field theory. Starting with an exposition of the Hopf algebra structure of generic graphs, it reviews and summarizes the existing literature. It then applies this Hopf algebraic structure to the combinatorics of graphical enumeration for the first time, and introduces a novel method of asymptotic analysis to answer asymptotic questions. This major breakthrough has combinatorial applications far beyond the analysis of graphical enumeration. The book also provides detailed examples for the asymptotics of renormalizable quantum field theories, which underlie the Standard Model of particle physics. A deeper analysis of such renormalizable field theories reveals their algebraic lattice structure. The pedagogical presentation allows readers to apply these new methods to other problems, making this thesis a future classic for the study of asymptotic problems in quantum fields, network theory and far beyond.
Book Synopsis Graphs & Digraphs, Fourth Edition by : Gary Chartrand
Download or read book Graphs & Digraphs, Fourth Edition written by Gary Chartrand and published by CRC Press. This book was released on 2004-10-28 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a growing range of applications in fields from computer science to chemistry and communications networks, graph theory has enjoyed a rapid increase of interest and widespread recognition as an important area of mathematics. Through more than 20 years of publication, Graphs & Digraphs has remained a popular point of entry to the field, and through its various editions, has evolved with the field from a purely mathematical treatment to one that also addresses the mathematical needs of computer scientists. Carefully updated, streamlined, and enhanced with new features, Graphs & Digraphs, Fourth Edition reflects many of the developments in graph theory that have emerged in recent years. The authors have added discussions on topics of increasing interest, deleted outdated material, and judiciously augmented the Exercises sections to cover a range of problems that reach beyond the construction of proofs. New in the Fourth Edition: Expanded treatment of Ramsey theory Major revisions to the material on domination and distance New material on list colorings that includes interesting recent results A solutions manual covering many of the exercises available to instructors with qualifying course adoptions A comprehensive bibliography including an updated list of graph theory books Every edition of Graphs & Digraphs has been unique in its reflection the subject as one that is important, intriguing, and most of all beautiful. The fourth edition continues that tradition, offering a comprehensive, tightly integrated, and up-to-date introduction that imparts an appreciation as well as a solid understanding of the material.
Book Synopsis Generalized Feynman Amplitudes. (AM-62), Volume 62 by : Eugene R. Speer
Download or read book Generalized Feynman Amplitudes. (AM-62), Volume 62 written by Eugene R. Speer and published by Princeton University Press. This book was released on 2016-03-02 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a valuable discussion of renormalization through the addition of counterterms to the Lagrangian, giving the first complete proof of the cancellation of all divergences in an arbitrary interaction. The author also introduces a new method of renormalizing an arbitrary Feynman amplitude, a method that is simpler than previous approaches and can be used to study the renormalized perturbation series in quantum field theory.
Book Synopsis A Combinatorial Perspective on Quantum Field Theory by : Karen Yeats
Download or read book A Combinatorial Perspective on Quantum Field Theory written by Karen Yeats and published by Springer. This book was released on 2016-11-23 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores combinatorial problems and insights in quantum field theory. It is not comprehensive, but rather takes a tour, shaped by the author’s biases, through some of the important ways that a combinatorial perspective can be brought to bear on quantum field theory. Among the outcomes are both physical insights and interesting mathematics. The book begins by thinking of perturbative expansions as kinds of generating functions and then introduces renormalization Hopf algebras. The remainder is broken into two parts. The first part looks at Dyson-Schwinger equations, stepping gradually from the purely combinatorial to the more physical. The second part looks at Feynman graphs and their periods. The flavour of the book will appeal to mathematicians with a combinatorics background as well as mathematical physicists and other mathematicians.
Book Synopsis Grassmannian Geometry of Scattering Amplitudes by : Nima Arkani-Hamed
Download or read book Grassmannian Geometry of Scattering Amplitudes written by Nima Arkani-Hamed and published by Cambridge University Press. This book was released on 2016-05-05 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the broader fields of mathematical physics.
Book Synopsis Partition Functions and Automorphic Forms by : Valery A. Gritsenko
Download or read book Partition Functions and Automorphic Forms written by Valery A. Gritsenko and published by Springer Nature. This book was released on 2020-07-09 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the research in several recently discovered and actively developing mathematical and mathematical physics areas. It focuses on: 1) Feynman integrals and modular functions, 2) hyperbolic and Lorentzian Kac-Moody algebras, related automorphic forms and applications to quantum gravity, 3) superconformal indices and elliptic hypergeometric integrals, related instanton partition functions, 4) moonshine, its arithmetic aspects, Jacobi forms, elliptic genus, and string theory, and 5) theory and applications of the elliptic Painleve equation, and aspects of Painleve equations in quantum field theories. All the topics covered are related to various partition functions emerging in different supersymmetric and ordinary quantum field theories in curved space-times of different (d=2,3,...,6) dimensions. Presenting multidisciplinary methods (localization, Borcherds products, theory of special functions, Cremona maps, etc) for treating a range of partition functions, the book is intended for graduate students and young postdocs interested in the interaction between quantum field theory and mathematics related to automorphic forms, representation theory, number theory and geometry, and mirror symmetry.