Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Geometrical Combinatorial Topology
Download Geometrical Combinatorial Topology full books in PDF, epub, and Kindle. Read online Geometrical Combinatorial Topology ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Combinatorial Algebraic Topology by : Dimitry Kozlov
Download or read book Combinatorial Algebraic Topology written by Dimitry Kozlov and published by Springer Science & Business Media. This book was released on 2008-01-08 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.
Book Synopsis A Combinatorial Introduction to Topology by : Michael Henle
Download or read book A Combinatorial Introduction to Topology written by Michael Henle and published by Courier Corporation. This book was released on 1994-01-01 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
Book Synopsis Geometric Combinatorics by : Ezra Miller
Download or read book Geometric Combinatorics written by Ezra Miller and published by American Mathematical Soc.. This book was released on 2007 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric combinatorics describes a wide area of mathematics that is primarily the study of geometric objects and their combinatorial structure. This text is a compilation of expository articles at the interface between combinatorics and geometry.
Book Synopsis Invitation to Combinatorial Topology by : Maurice Fréchet
Download or read book Invitation to Combinatorial Topology written by Maurice Fréchet and published by Courier Corporation. This book was released on 2012-08-13 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: An elementary text that can be understood by anyone with a background in high school geometry, Invitation to Combinatorial Topology offers a stimulating initiation to important topological ideas. This translation from the original French does full justice to the text's coherent presentation as well as to its rich historical content. Subjects include the problems inherent to coloring maps, homeomorphism, applications of Descartes' theorem, and topological polygons. Considerations of the topological classification of closed surfaces cover elementary operations, use of normal forms of polyhedra, reduction to normal form, and application to the geometric theory of functions. 1967 edition. 108 figures. Bibliography. Index.
Book Synopsis Digital Geometry by : Reinhard Klette
Download or read book Digital Geometry written by Reinhard Klette and published by Morgan Kaufmann. This book was released on 2004-08-06 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book on digital geometry by the leaders in the field.
Book Synopsis Classical Topology and Combinatorial Group Theory by : John Stillwell
Download or read book Classical Topology and Combinatorial Group Theory written by John Stillwell and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.
Book Synopsis Topology and Geometry by : Glen E. Bredon
Download or read book Topology and Geometry written by Glen E. Bredon and published by Springer Science & Business Media. This book was released on 1993-06-24 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS
Book Synopsis Distributed Computing Through Combinatorial Topology by : Maurice Herlihy
Download or read book Distributed Computing Through Combinatorial Topology written by Maurice Herlihy and published by Newnes. This book was released on 2013-11-30 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed Computing Through Combinatorial Topology describes techniques for analyzing distributed algorithms based on award winning combinatorial topology research. The authors present a solid theoretical foundation relevant to many real systems reliant on parallelism with unpredictable delays, such as multicore microprocessors, wireless networks, distributed systems, and Internet protocols. Today, a new student or researcher must assemble a collection of scattered conference publications, which are typically terse and commonly use different notations and terminologies. This book provides a self-contained explanation of the mathematics to readers with computer science backgrounds, as well as explaining computer science concepts to readers with backgrounds in applied mathematics. The first section presents mathematical notions and models, including message passing and shared-memory systems, failures, and timing models. The next section presents core concepts in two chapters each: first, proving a simple result that lends itself to examples and pictures that will build up readers' intuition; then generalizing the concept to prove a more sophisticated result. The overall result weaves together and develops the basic concepts of the field, presenting them in a gradual and intuitively appealing way. The book's final section discusses advanced topics typically found in a graduate-level course for those who wish to explore further. - Named a 2013 Notable Computer Book for Computing Methodologies by Computing Reviews - Gathers knowledge otherwise spread across research and conference papers using consistent notations and a standard approach to facilitate understanding - Presents unique insights applicable to multiple computing fields, including multicore microprocessors, wireless networks, distributed systems, and Internet protocols - Synthesizes and distills material into a simple, unified presentation with examples, illustrations, and exercises
Book Synopsis A Course in Topological Combinatorics by : Mark de Longueville
Download or read book A Course in Topological Combinatorics written by Mark de Longueville and published by Springer Science & Business Media. This book was released on 2013 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook in topological combinatorics covers such topics as fair division, graph coloring problems, evasiveness of graph properties, and embedding problems from discrete geometry. Includes many figures and exercises.
Book Synopsis Intuitive Combinatorial Topology by : V.G. Boltyanskii
Download or read book Intuitive Combinatorial Topology written by V.G. Boltyanskii and published by Springer Science & Business Media. This book was released on 2001-03-30 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topology is a relatively young and very important branch of mathematics, which studies the properties of objects that are preserved through deformations, twistings, and stretchings. This book deals with the topology of curves and surfaces as well as with the fundamental concepts of homotopy and homology, and does this in a lively and well-motivated way. This book is well suited for readers who are interested in finding out what topology is all about.
Book Synopsis Combinatorial Geometry by : János Pach
Download or read book Combinatorial Geometry written by János Pach and published by John Wiley & Sons. This book was released on 2011-10-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete, self-contained introduction to a powerful and resurgingmathematical discipline . Combinatorial Geometry presents andexplains with complete proofs some of the most important resultsand methods of this relatively young mathematical discipline,started by Minkowski, Fejes Toth, Rogers, and Erd???s. Nearly halfthe results presented in this book were discovered over the pasttwenty years, and most have never before appeared in any monograph.Combinatorial Geometry will be of particular interest tomathematicians, computer scientists, physicists, and materialsscientists interested in computational geometry, robotics, sceneanalysis, and computer-aided design. It is also a superb textbook,complete with end-of-chapter problems and hints to their solutionsthat help students clarify their understanding and test theirmastery of the material. Topics covered include: * Geometric number theory * Packing and covering with congruent convex disks * Extremal graph and hypergraph theory * Distribution of distances among finitely many points * Epsilon-nets and Vapnik--Chervonenkis dimension * Geometric graph theory * Geometric discrepancy theory * And much more
Book Synopsis Geometric and Topological Inference by : Jean-Daniel Boissonnat
Download or read book Geometric and Topological Inference written by Jean-Daniel Boissonnat and published by Cambridge University Press. This book was released on 2018-09-27 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous introduction to geometric and topological inference, for anyone interested in a geometric approach to data science.
Book Synopsis Toric Topology by : Victor M. Buchstaber
Download or read book Toric Topology written by Victor M. Buchstaber and published by American Mathematical Soc.. This book was released on 2015-07-15 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about toric topology, a new area of mathematics that emerged at the end of the 1990s on the border of equivariant topology, algebraic and symplectic geometry, combinatorics, and commutative algebra. It has quickly grown into a very active area with many links to other areas of mathematics, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a class of manifolds with torus actions defined in combinatorial terms. Construction of moment-angle manifolds relates to combinatorial geometry and algebraic geometry of toric varieties via the notion of a quasitoric manifold. Discovery of remarkable geometric structures on moment-angle manifolds led to important connections with classical and modern areas of symplectic, Lagrangian, and non-Kaehler complex geometry. A related categorical construction of moment-angle complexes and polyhedral products provides for a universal framework for many fundamental constructions of homotopical topology. The study of polyhedral products is now evolving into a separate subject of homotopy theory. A new perspective on torus actions has also contributed to the development of classical areas of algebraic topology, such as complex cobordism. This book includes many open problems and is addressed to experts interested in new ideas linking all the subjects involved, as well as to graduate students and young researchers ready to enter this beautiful new area.
Book Synopsis Using the Borsuk-Ulam Theorem by : Jiri Matousek
Download or read book Using the Borsuk-Ulam Theorem written by Jiri Matousek and published by Springer Science & Business Media. This book was released on 2008-01-12 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: To the uninitiated, algebraic topology might seem fiendishly complex, but its utility is beyond doubt. This brilliant exposition goes back to basics to explain how the subject has been used to further our understanding in some key areas. A number of important results in combinatorics, discrete geometry, and theoretical computer science have been proved using algebraic topology. While the results are quite famous, their proofs are not so widely understood. This book is the first textbook treatment of a significant part of these results. It focuses on so-called equivariant methods, based on the Borsuk-Ulam theorem and its generalizations. The topological tools are intentionally kept on a very elementary level. No prior knowledge of algebraic topology is assumed, only a background in undergraduate mathematics, and the required topological notions and results are gradually explained.
Book Synopsis The Geometry and Topology of Coxeter Groups by : Michael Davis
Download or read book The Geometry and Topology of Coxeter Groups written by Michael Davis and published by Princeton University Press. This book was released on 2008 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.
Book Synopsis Geometry and Topology for Mesh Generation by : Herbert Edelsbrunner
Download or read book Geometry and Topology for Mesh Generation written by Herbert Edelsbrunner and published by Cambridge University Press. This book was released on 2001-05-28 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book combines topics in mathematics (geometry and topology), computer science (algorithms), and engineering (mesh generation). The original motivation for these topics was the difficulty faced (both conceptually and in the technical execution) in any attempt to combine elements of combinatorial and of numerical algorithms. Mesh generation is a topic where a meaningful combination of these different approaches to problem solving is inevitable. The book develops methods from both areas that are amenable to combination, and explains recent breakthrough solutions to meshing that fit into this category.The book should be an ideal graduate text for courses on mesh generation. The specific material is selected giving preference to topics that are elementary, attractive, lend themselves to teaching, useful, and interesting.
Book Synopsis Combinatorial Convexity and Algebraic Geometry by : Günter Ewald
Download or read book Combinatorial Convexity and Algebraic Geometry written by Günter Ewald and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.