Gaussian Processes for Machine Learning

Download Gaussian Processes for Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 026218253X
Total Pages : 266 pages
Book Rating : 4.2/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Processes for Machine Learning by : Carl Edward Rasmussen

Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Lectures on Gaussian Processes

Download Lectures on Gaussian Processes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642249396
Total Pages : 129 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Gaussian Processes by : Mikhail Lifshits

Download or read book Lectures on Gaussian Processes written by Mikhail Lifshits and published by Springer Science & Business Media. This book was released on 2012-01-11 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gaussian processes can be viewed as a far-reaching infinite-dimensional extension of classical normal random variables. Their theory presents a powerful range of tools for probabilistic modelling in various academic and technical domains such as Statistics, Forecasting, Finance, Information Transmission, Machine Learning - to mention just a few. The objective of these Briefs is to present a quick and condensed treatment of the core theory that a reader must understand in order to make his own independent contributions. The primary intended readership are PhD/Masters students and researchers working in pure or applied mathematics. The first chapters introduce essentials of the classical theory of Gaussian processes and measures with the core notions of reproducing kernel, integral representation, isoperimetric property, large deviation principle. The brevity being a priority for teaching and learning purposes, certain technical details and proofs are omitted. The later chapters touch important recent issues not sufficiently reflected in the literature, such as small deviations, expansions, and quantization of processes. In university teaching, one can build a one-semester advanced course upon these Briefs.​

Markov Processes, Gaussian Processes, and Local Times

Download Markov Processes, Gaussian Processes, and Local Times PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139458833
Total Pages : 4 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Markov Processes, Gaussian Processes, and Local Times by : Michael B. Marcus

Download or read book Markov Processes, Gaussian Processes, and Local Times written by Michael B. Marcus and published by Cambridge University Press. This book was released on 2006-07-24 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was first published in 2006. Written by two of the foremost researchers in the field, this book studies the local times of Markov processes by employing isomorphism theorems that relate them to certain associated Gaussian processes. It builds to this material through self-contained but harmonized 'mini-courses' on the relevant ingredients, which assume only knowledge of measure-theoretic probability. The streamlined selection of topics creates an easy entrance for students and experts in related fields. The book starts by developing the fundamentals of Markov process theory and then of Gaussian process theory, including sample path properties. It then proceeds to more advanced results, bringing the reader to the heart of contemporary research. It presents the remarkable isomorphism theorems of Dynkin and Eisenbaum and then shows how they can be applied to obtain new properties of Markov processes by using well-established techniques in Gaussian process theory. This original, readable book will appeal to both researchers and advanced graduate students.

Gaussian Processes, Function Theory, and the Inverse Spectral Problem

Download Gaussian Processes, Function Theory, and the Inverse Spectral Problem PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 048646279X
Total Pages : 354 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Processes, Function Theory, and the Inverse Spectral Problem by : Harry Dym

Download or read book Gaussian Processes, Function Theory, and the Inverse Spectral Problem written by Harry Dym and published by Courier Corporation. This book was released on 2008-01-01 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text offers background in function theory, Hardy functions, and probability as preparation for surveys of Gaussian processes, strings and spectral functions, and strings and spaces of integral functions. It addresses the relationship between the past and the future of a real, one-dimensional, stationary Gaussian process. 1976 edition.

Gaussian Random Processes

Download Gaussian Random Processes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461262755
Total Pages : 285 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Random Processes by : I.A. Ibragimov

Download or read book Gaussian Random Processes written by I.A. Ibragimov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals mainly with three problems involving Gaussian stationary processes. The first problem consists of clarifying the conditions for mutual absolute continuity (equivalence) of probability distributions of a "random process segment" and of finding effective formulas for densities of the equiva lent distributions. Our second problem is to describe the classes of spectral measures corresponding in some sense to regular stationary processes (in par ticular, satisfying the well-known "strong mixing condition") as well as to describe the subclasses associated with "mixing rate". The third problem involves estimation of an unknown mean value of a random process, this random process being stationary except for its mean, i. e. , it is the problem of "distinguishing a signal from stationary noise". Furthermore, we give here auxiliary information (on distributions in Hilbert spaces, properties of sam ple functions, theorems on functions of a complex variable, etc. ). Since 1958 many mathematicians have studied the problem of equivalence of various infinite-dimensional Gaussian distributions (detailed and sys tematic presentation of the basic results can be found, for instance, in [23]). In this book we have considered Gaussian stationary processes and arrived, we believe, at rather definite solutions. The second problem mentioned above is closely related with problems involving ergodic theory of Gaussian dynamic systems as well as prediction theory of stationary processes.

Modelling and Control of Dynamic Systems Using Gaussian Process Models

Download Modelling and Control of Dynamic Systems Using Gaussian Process Models PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319210211
Total Pages : 281 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Modelling and Control of Dynamic Systems Using Gaussian Process Models by : Juš Kocijan

Download or read book Modelling and Control of Dynamic Systems Using Gaussian Process Models written by Juš Kocijan and published by Springer. This book was released on 2015-11-21 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.

Stochastic Analysis of Mixed Fractional Gaussian Processes

Download Stochastic Analysis of Mixed Fractional Gaussian Processes PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0081023634
Total Pages : 212 pages
Book Rating : 4.0/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Analysis of Mixed Fractional Gaussian Processes by : Yuliya Mishura

Download or read book Stochastic Analysis of Mixed Fractional Gaussian Processes written by Yuliya Mishura and published by Elsevier. This book was released on 2018-05-26 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Analysis of Mixed Fractional Gaussian Processes presents the main tools necessary to characterize Gaussian processes. The book focuses on the particular case of the linear combination of independent fractional and sub-fractional Brownian motions with different Hurst indices. Stochastic integration with respect to these processes is considered, as is the study of the existence and uniqueness of solutions of related SDE's. Applications in finance and statistics are also explored, with each chapter supplying a number of exercises to illustrate key concepts. - Presents both mixed fractional and sub-fractional Brownian motions - Provides an accessible description for mixed fractional gaussian processes that is ideal for Master's and PhD students - Includes different Hurst indices

Gaussian Processes

Download Gaussian Processes PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821887639
Total Pages : 208 pages
Book Rating : 4.8/5 (876 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Processes by : Takeyuki Hida

Download or read book Gaussian Processes written by Takeyuki Hida and published by American Mathematical Soc.. This book was released on with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at students and researchers in mathematics, communications engineering, and economics, this book describes the probabilistic structure of a Gaussian process in terms of its canonical representation (or its innovation process). Multiple Markov properties of a Gaussian process and equivalence problems of Gaussian processes are clearly presented. The authors' approach is unique, involving causality in time evolution and information-theoretic aspects. Because the book is self-contained and only requires background in the fundamentals of probability theory and measure theory, it would be suitable as a textbook at the senior undergraduate or graduate level.

Gaussian Process Regression Analysis for Functional Data

Download Gaussian Process Regression Analysis for Functional Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439837740
Total Pages : 214 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Process Regression Analysis for Functional Data by : Jian Qing Shi

Download or read book Gaussian Process Regression Analysis for Functional Data written by Jian Qing Shi and published by CRC Press. This book was released on 2011-07-01 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Coveri

Surrogates

Download Surrogates PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000766209
Total Pages : 560 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Surrogates by : Robert B. Gramacy

Download or read book Surrogates written by Robert B. Gramacy and published by CRC Press. This book was released on 2020-03-10 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer simulation experiments are essential to modern scientific discovery, whether that be in physics, chemistry, biology, epidemiology, ecology, engineering, etc. Surrogates are meta-models of computer simulations, used to solve mathematical models that are too intricate to be worked by hand. Gaussian process (GP) regression is a supremely flexible tool for the analysis of computer simulation experiments. This book presents an applied introduction to GP regression for modelling and optimization of computer simulation experiments. Features: • Emphasis on methods, applications, and reproducibility. • R code is integrated throughout for application of the methods. • Includes more than 200 full colour figures. • Includes many exercises to supplement understanding, with separate solutions available from the author. • Supported by a website with full code available to reproduce all methods and examples. The book is primarily designed as a textbook for postgraduate students studying GP regression from mathematics, statistics, computer science, and engineering. Given the breadth of examples, it could also be used by researchers from these fields, as well as from economics, life science, social science, etc.

Efficient Reinforcement Learning Using Gaussian Processes

Download Efficient Reinforcement Learning Using Gaussian Processes PDF Online Free

Author :
Publisher : KIT Scientific Publishing
ISBN 13 : 3866445695
Total Pages : 226 pages
Book Rating : 4.8/5 (664 download)

DOWNLOAD NOW!


Book Synopsis Efficient Reinforcement Learning Using Gaussian Processes by : Marc Peter Deisenroth

Download or read book Efficient Reinforcement Learning Using Gaussian Processes written by Marc Peter Deisenroth and published by KIT Scientific Publishing. This book was released on 2010 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias. Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.

Learning Kernel Classifiers

Download Learning Kernel Classifiers PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262263047
Total Pages : 402 pages
Book Rating : 4.2/5 (63 download)

DOWNLOAD NOW!


Book Synopsis Learning Kernel Classifiers by : Ralf Herbrich

Download or read book Learning Kernel Classifiers written by Ralf Herbrich and published by MIT Press. This book was released on 2001-12-07 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the theory and application of kernel classification methods. Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier—a limited, but well-established and comprehensively studied model—and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.

Advanced Lectures on Machine Learning

Download Advanced Lectures on Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540286500
Total Pages : 249 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Advanced Lectures on Machine Learning by : Olivier Bousquet

Download or read book Advanced Lectures on Machine Learning written by Olivier Bousquet and published by Springer. This book was released on 2011-03-22 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.

Graphical Models for Machine Learning and Digital Communication

Download Graphical Models for Machine Learning and Digital Communication PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262062022
Total Pages : 230 pages
Book Rating : 4.0/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Graphical Models for Machine Learning and Digital Communication by : Brendan J. Frey

Download or read book Graphical Models for Machine Learning and Digital Communication written by Brendan J. Frey and published by MIT Press. This book was released on 1998 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Content Description. #Includes bibliographical references and index.

Zeros of Gaussian Analytic Functions and Determinantal Point Processes

Download Zeros of Gaussian Analytic Functions and Determinantal Point Processes PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821843737
Total Pages : 170 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Zeros of Gaussian Analytic Functions and Determinantal Point Processes by : John Ben Hough

Download or read book Zeros of Gaussian Analytic Functions and Determinantal Point Processes written by John Ben Hough and published by American Mathematical Soc.. This book was released on 2009 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines in some depth two important classes of point processes, determinantal processes and 'Gaussian zeros', i.e., zeros of random analytic functions with Gaussian coefficients. This title presents a primer on modern techniques on the interface of probability and analysis.

An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes

Download An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes PDF Online Free

Author :
Publisher : IMS
ISBN 13 : 9780940600171
Total Pages : 198 pages
Book Rating : 4.6/5 (1 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes by : Robert J. Adler

Download or read book An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes written by Robert J. Adler and published by IMS. This book was released on 1990 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Machine Learning and Knowledge Discovery in Databases

Download Machine Learning and Knowledge Discovery in Databases PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 354087478X
Total Pages : 714 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Walter Daelemans

Download or read book Machine Learning and Knowledge Discovery in Databases written by Walter Daelemans and published by Springer Science & Business Media. This book was released on 2008-09-04 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.