Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Fuzzy Logic And Neural Networks For Hybrid Intelligent System Design
Download Fuzzy Logic And Neural Networks For Hybrid Intelligent System Design full books in PDF, epub, and Kindle. Read online Fuzzy Logic And Neural Networks For Hybrid Intelligent System Design ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design by : Oscar Castillo
Download or read book Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design written by Oscar Castillo and published by Springer Nature. This book was released on 2023-01-27 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers recent developments on fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations. In addition, the above-mentioned methods are applied to areas such as intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. Nowadays, the main topic of the book is highly relevant, as most current intelligent systems and devices in use utilize some form of intelligent feature to enhance their performance. In addition, on the theoretical side, new and advanced models and algorithms of type-2 and type-3 fuzzy logic are presented, which are of great interest to researchers working on these areas. Also, new nature-inspired optimization algorithms and innovative neural models are put forward in the manuscript, which are very popular subjects, at this moment. There are contributions on theoretical aspects as well as applications, which make the book very appealing to a wide audience, ranging from researchers to professors and graduate students.
Book Synopsis Fuzzy Logic in Intelligent System Design by : Patricia Melin
Download or read book Fuzzy Logic in Intelligent System Design written by Patricia Melin and published by Springer. This book was released on 2017-09-30 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes recent advances in the use of fuzzy logic for the design of hybrid intelligent systems based on nature-inspired optimization and their applications in areas such as intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. Based on papers presented at the North American Fuzzy Information Processing Society Annual Conference (NAFIPS 2017), held in Cancun, Mexico from 16 to 18 October 2017, the book is divided into nine main parts, the first of which first addresses theoretical aspects, and proposes new concepts and algorithms based on type-1 fuzzy systems. The second part consists of papers on new concepts and algorithms for type-2 fuzzy systems, and on applications of type-2 fuzzy systems in diverse areas, such as time series prediction and pattern recognition. In turn, the third part contains papers that present enhancements to meta-heuristics based on fuzzy logic techniques describing new nature-inspired optimization algorithms that use fuzzy dynamic adaptation of parameters. The fourth part presents emergent intelligent models, which range from quantum algorithms to cellular automata. The fifth part explores applications of fuzzy logic in diverse areas of medicine, such as the diagnosis of hypertension and heart diseases. The sixth part describes new computational intelligence algorithms and their applications in different areas of intelligent control, while the seventh examines the use of fuzzy logic in different mathematic models. The eight part deals with a diverse range of applications of fuzzy logic, ranging from environmental to autonomous navigation, while the ninth covers theoretical concepts of fuzzy models
Book Synopsis Artificial Intelligence Systems Based on Hybrid Neural Networks by : Michael Zgurovsky
Download or read book Artificial Intelligence Systems Based on Hybrid Neural Networks written by Michael Zgurovsky and published by Springer Nature. This book was released on 2020-09-03 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for specialists as well as students and graduate students in the field of artificial intelligence, robotics and information technology. It is will also appeal to a wide range of readers interested in expanding the functionality of artificial intelligence systems. One of the pressing problems of modern artificial intelligence systems is the development of integrated hybrid systems based on deep learning. Unfortunately, there is currently no universal methodology for developing topologies of hybrid neural networks (HNN) using deep learning. The development of such systems calls for the expansion of the use of neural networks (NS) for solving recognition, classification and optimization problems. As such, it is necessary to create a unified methodology for constructing HNN with a selection of models of artificial neurons that make up HNN, gradually increasing the complexity of their structure using hybrid learning algorithms.
Book Synopsis New Perspectives on Hybrid Intelligent System Design based on Fuzzy Logic, Neural Networks and Metaheuristics by : Oscar Castillo
Download or read book New Perspectives on Hybrid Intelligent System Design based on Fuzzy Logic, Neural Networks and Metaheuristics written by Oscar Castillo and published by Springer Nature. This book was released on 2022-09-30 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, recent developments on fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations, are presented. In addition, the above-mentioned methods are applied to areas such as, intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. The book contains a collection of papers focused on hybrid intelligent systems based on soft computing techniques. There are some papers with the main theme of type-1 and type-2 fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on type-1 and type-2 fuzzy logic and their applications. There also some papers that offer theoretical concepts and applications of meta-heuristics in different areas. Another group of papers describe diverse applications of fuzzy logic, neural networks and hybrid intelligent systems in medical problems. There are also some papers that present theory and practice of neural networks in different areas of application. In addition, there are papers that present theory and practice of optimization and evolutionary algorithms in different areas of application. Finally, there are some papers describing applications of fuzzy logic, neural networks and meta-heuristics in pattern recognition and classification problems.
Book Synopsis Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization by : Patricia Melin
Download or read book Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization written by Patricia Melin and published by Springer. This book was released on 2015-06-12 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in eight main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on fuzzy systems. The second part contains papers with the main theme of neural networks theory, which are basically papers dealing with new concepts and algorithms in neural networks. The third part contains papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The fourth part contains papers describing new nature-inspired optimization algorithms. The fifth part presents diverse applications of nature-inspired optimization algorithms. The sixth part contains papers describing new optimization algorithms. The seventh part contains papers describing applications of fuzzy logic in diverse areas, such as time series prediction and pattern recognition. Finally, the eighth part contains papers that present enhancements to meta-heuristics based on fuzzy logic techniques.
Book Synopsis Engineering Intelligent Hybrid Multi-Agent Systems by : Rajiv Khosla
Download or read book Engineering Intelligent Hybrid Multi-Agent Systems written by Rajiv Khosla and published by Springer Science & Business Media. This book was released on 1997-09-30 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineering Intelligent Hybrid Multi-Agent Systems is about building intelligent hybrid systems. Included is coverage of applications and design concepts related to fusion systems, transformation systems and combination systems. These applications are in areas involving hybrid configurations of knowledge-based systems, case-based reasoning, fuzzy systems, artificial neural networks, genetic algorithms, and in knowledge discovery and data mining. Through examples and applications a synergy of these subjects is demonstrated. The authors introduce a multi-agent architectural theory for engineering intelligent associative hybrid systems. The architectural theory is described at both the task structure level and the computational level. This problem-solving architecture is relevant for developing knowledge agents and information agents. An enterprise-wide system modeling framework is outlined to facilitate forward and backward integration of systems developed in the knowledge, information, and data engineering layers of an organization. In the modeling process, software engineering aspects like agent oriented analysis, design and reuse are developed and described. Engineering Intelligent Hybrid Multi-Agent Systems is the first book in the field to provide details of a multi-agent architecture for building intelligent hybrid systems.
Book Synopsis Type-2 Fuzzy Logic: Theory and Applications by : Oscar Castillo
Download or read book Type-2 Fuzzy Logic: Theory and Applications written by Oscar Castillo and published by Springer Science & Business Media. This book was released on 2008-02-20 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes new methods for building intelligent systems using type-2 fuzzy logic and soft computing (SC) techniques. The authors extend the use of fuzzy logic to a higher order, which is called type-2 fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we can build powerful hybrid intelligent systems that can use the advantages that each technique offers. This book is intended to be a major reference tool and can be used as a textbook.
Book Synopsis Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering by : Nikola K. Kasabov
Download or read book Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering written by Nikola K. Kasabov and published by Marcel Alencar. This book was released on 1996 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combines the study of neural networks and fuzzy systems with symbolic artificial intelligence (AI) methods to build comprehensive AI systems. Describes major AI problems (pattern recognition, speech recognition, prediction, decision-making, game-playing) and provides illustrative examples. Includes applications in engineering, business and finance.
Book Synopsis Soft Computing for Hybrid Intelligent Systems by : Oscar Castillo
Download or read book Soft Computing for Hybrid Intelligent Systems written by Oscar Castillo and published by Springer. This book was released on 2008-09-10 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: We describe in this book, new methods and applications of hybrid intelligent systems using soft computing techniques. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and evolutionary al- rithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of intelligent control, which are basically papers that use hybrid systems to solve particular problems of control. The second part contains papers with the main theme of pattern recognition, which are basically papers using soft computing techniques for achieving pattern recognition in different applications. The third part contains papers with the themes of intelligent agents and social systems, which are papers that apply the ideas of agents and social behavior to solve real-world problems. The fourth part contains papers that deal with the hardware implementation of intelligent systems for solving particular problems. The fifth part contains papers that deal with modeling, simulation and optimization for real-world applications.
Book Synopsis New Directions on Hybrid Intelligent Systems Based on Neural Networks, Fuzzy Logic, and Optimization Algorithms by : Patricia Melin
Download or read book New Directions on Hybrid Intelligent Systems Based on Neural Networks, Fuzzy Logic, and Optimization Algorithms written by Patricia Melin and published by Springer Nature. This book was released on with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Hybrid Intelligent Engineering Systems by : L. C. Jain
Download or read book Hybrid Intelligent Engineering Systems written by L. C. Jain and published by World Scientific. This book was released on 1997 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.
Book Synopsis Hybrid Intelligent Systems Based on Extensions of Fuzzy Logic, Neural Networks and Metaheuristics by : Oscar Castillo
Download or read book Hybrid Intelligent Systems Based on Extensions of Fuzzy Logic, Neural Networks and Metaheuristics written by Oscar Castillo and published by Springer Nature. This book was released on 2023-06-12 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, recent theoretical developments on fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations, are presented. In addition, the above-mentioned methods are presented in application areas such as, intelligent control and robotics, pattern recognition, medical diagnosis, decision-making, time series prediction and optimization of complex problems. The book contains a collection of papers focused on hybrid intelligent systems based on soft computing techniques. There are a group of papers with the main theme of type-1 and type-2 fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on type-1 and type-2 fuzzy logic and their applications. There also a group of papers that offer theoretical concepts and applications of meta-heuristics in different areas. Another group of papers outlines diverse applications of fuzzy logic, neural networks and hybrid intelligent systems in medical problems. There are also some papers that present theory and practice of neural networks in different application areas. In addition, there are papers that offer theory and practice of optimization and evolutionary algorithms in different application areas. Finally, there are a group of papers describing applications of fuzzy logic, neural networks and meta-heuristics in pattern recognition and classification problems.
Book Synopsis Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine by : Oscar Castillo
Download or read book Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine written by Oscar Castillo and published by Springer Nature. This book was released on 2019-11-23 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the latest advances in fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations, and their applications in areas such as: intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction, and optimization of complex problems. The book is divided into five main parts. The first part proposes new concepts and algorithms based on type-1 and type-2 fuzzy logic and their applications; the second explores new concepts and algorithms in neural networks and fuzzy logic applied to recognition. The third part examines the theory and practice of meta-heuristics in various areas of application, while the fourth highlights diverse applications of fuzzy logic, neural networks and hybrid intelligent systems in medical contexts. Finally, the fifth part focuses on applications of fuzzy logic, neural networks and meta-heuristics to robotics problems.
Book Synopsis Nature-Inspired Design of Hybrid Intelligent Systems by : Patricia Melin
Download or read book Nature-Inspired Design of Hybrid Intelligent Systems written by Patricia Melin and published by Springer. This book was released on 2016-12-08 with total page 817 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as time series prediction and pattern recognition. The sixth part examines new optimization algorithms and their applications. Lastly, the seventh part is dedicated to the design and application of different hybrid intelligent systems.
Book Synopsis NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM by : S. RAJASEKARAN
Download or read book NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM written by S. RAJASEKARAN and published by PHI Learning Pvt. Ltd.. This book was released on 2003-01-01 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.
Book Synopsis Recent Advances on Hybrid Approaches for Designing Intelligent Systems by : Oscar Castillo
Download or read book Recent Advances on Hybrid Approaches for Designing Intelligent Systems written by Oscar Castillo and published by Springer. This book was released on 2014-03-26 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes recent advances on hybrid intelligent systems using soft computing techniques for diverse areas of application, such as intelligent control and robotics, pattern recognition, time series prediction and optimization complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of type-2 fuzzy logic, which basically consists of papers that propose new models and applications for type-2 fuzzy systems. The second part contains papers with the main theme of bio-inspired optimization algorithms, which are basically papers using nature-inspired techniques to achieve optimization of complex optimization problems in diverse areas of application. The third part contains papers that deal with new models and applications of neural networks in real world problems. The fourth part contains papers with the theme of intelligent optimization methods, which basically consider the proposal of new methods of optimization to solve complex real world optimization problems. The fifth part contains papers with the theme of evolutionary methods and intelligent computing, which are papers considering soft computing methods for applications related to diverse areas, such as natural language processing, recommending systems and optimization.
Book Synopsis Compensatory Genetic Fuzzy Neural Networks and Their Applications by : Yan-Qing Zhang
Download or read book Compensatory Genetic Fuzzy Neural Networks and Their Applications written by Yan-Qing Zhang and published by World Scientific. This book was released on 1998 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a powerful hybrid intelligent system based on fuzzy logic, neural networks, genetic algorithms and related intelligent techniques. The new compensatory genetic fuzzy neural networks have been widely used in fuzzy control, nonlinear system modeling, compression of a fuzzy rule base, expansion of a sparse fuzzy rule base, fuzzy knowledge discovery, time series prediction, fuzzy games and pattern recognition. This effective soft computing system is able to perform both linguistic-word-level fuzzy reasoning and numerical-data-level information processing. The book also proposes various novel soft computing techniques.