Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Functionals Of Finite Riemann Surfaces
Download Functionals Of Finite Riemann Surfaces full books in PDF, epub, and Kindle. Read online Functionals Of Finite Riemann Surfaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Functionals of Finite Riemann Surfaces by : Menahem Schiffer
Download or read book Functionals of Finite Riemann Surfaces written by Menahem Schiffer and published by Courier Corporation. This book was released on 2014-06-01 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced monograph on finite Riemann surfaces, based on the authors' 1949–50 lectures at Princeton University, remains a fundamental book for graduate students. The Bulletin of the American Mathematical Society hailed the self-contained treatment as the source of "a plethora of ideas, each interesting in its own right," noting that "the patient reader will be richly rewarded." Suitable for graduate-level courses, the text begins with three chapters that offer a development of the classical theory along historical lines, examining geometrical and physical considerations, existence theorems for finite Riemann surfaces, and relations between differentials. Subsequent chapters explore bilinear differentials, surfaces imbedded in a given surface, integral operators, and variations of surfaces and of their functionals. The book concludes with a look at applications of the variational method and remarks on generalization to higher dimensional Kahler manifolds.
Book Synopsis Functionals of Finite Riemann Surfaces by : Menahem Schiffer
Download or read book Functionals of Finite Riemann Surfaces written by Menahem Schiffer and published by Princeton University Press. This book was released on 2015-12-08 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: An investigation of finite Riemann surfaces from the point of view of functional analysis, that is, the study of the various Abelian differentials of the surface in their dependence on the surface itself. Many new results are presented. Originally published in 1954. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Book Synopsis Algebraic Curves and Riemann Surfaces by : Rick Miranda
Download or read book Algebraic Curves and Riemann Surfaces written by Rick Miranda and published by American Mathematical Soc.. This book was released on 1995 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
Book Synopsis Lectures on Riemann Surfaces by : Otto Forster
Download or read book Lectures on Riemann Surfaces written by Otto Forster and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one. From the reviews: "This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces."—-MATHEMATICAL REVIEWS
Book Synopsis Riemann Surfaces by : Lars Valerian Ahlfors
Download or read book Riemann Surfaces written by Lars Valerian Ahlfors and published by Princeton University Press. This book was released on 2015-12-08 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of Riemann surfaces has a geometric and an analytic part. The former deals with the axiomatic definition of a Riemann surface, methods of construction, topological equivalence, and conformal mappings of one Riemann surface on another. The analytic part is concerned with the existence and properties of functions that have a special character connected with the conformal structure, for instance: subharmonic, harmonic, and analytic functions. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Book Synopsis Riemann Surfaces of Infinite Genus by : Joel S. Feldman
Download or read book Riemann Surfaces of Infinite Genus written by Joel S. Feldman and published by American Mathematical Soc.. This book was released on 2003 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the authors geometrically construct Riemann surfaces of infinite genus by pasting together plane domains and handles. To achieve a meaningful generalization of the classical theory of Riemann surfaces to the case of infinite genus, one must impose restrictions on the asymptotic behavior of the Riemann surface. In the construction carried out here, these restrictions are formulated in terms of the sizes and locations of the handles and in terms of the gluing maps. The approach used has two main attractions. The first is that much of the classical theory of Riemann surfaces, including the Torelli theorem, can be generalized to this class. The second is that solutions of Kadomcev-Petviashvilli equations can be expressed in terms of theta functions associated with Riemann surfaces of infinite genus constructed in the book. Both of these are developed here. The authors also present in detail a number of important examples of Riemann surfaces of infinite genus (hyperelliptic surfaces of infinite genus, heat surfaces and Fermi surfaces). The book is suitable for graduate students and research mathematicians interested in analysis and integrable systems.
Book Synopsis A Course in Complex Analysis and Riemann Surfaces by : Wilhelm Schlag
Download or read book A Course in Complex Analysis and Riemann Surfaces written by Wilhelm Schlag and published by American Mathematical Society. This book was released on 2014-08-06 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.
Book Synopsis Algebra and Galois Theories by : Régine Douady
Download or read book Algebra and Galois Theories written by Régine Douady and published by Springer Nature. This book was released on 2020-07-13 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Galois theory has such close analogies with the theory of coverings that algebraists use a geometric language to speak of field extensions, while topologists speak of "Galois coverings". This book endeavors to develop these theories in a parallel way, starting with that of coverings, which better allows the reader to make images. The authors chose a plan that emphasizes this parallelism. The intention is to allow to transfer to the algebraic framework of Galois theory the geometric intuition that one can have in the context of coverings. This book is aimed at graduate students and mathematicians curious about a non-exclusively algebraic view of Galois theory.
Book Synopsis Compact Riemann Surfaces by : R. Narasimhan
Download or read book Compact Riemann Surfaces written by R. Narasimhan and published by Birkhäuser. This book was released on 2012-12-06 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Moduli Spaces of Riemann Surfaces by : Benson Farb
Download or read book Moduli Spaces of Riemann Surfaces written by Benson Farb and published by American Mathematical Soc.. This book was released on 2013-08-16 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Book Synopsis Calculus Simplified by : Oscar E. Fernandez
Download or read book Calculus Simplified written by Oscar E. Fernandez and published by Princeton University Press. This book was released on 2019-06-11 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In Calculus simplified, Oscar Fernandez combines the strengths and omits the weaknesses, resulting in a "Goldilocks approach" to learning calculus : just the right level of detail, the right depth of insights, and the flexibility to customize your calculus adventure."--Page 4 de la couverture.
Book Synopsis Meromorphic Functions and Analytic Curves. (AM-12) by : Hermann Weyl
Download or read book Meromorphic Functions and Analytic Curves. (AM-12) written by Hermann Weyl and published by Princeton University Press. This book was released on 2016-03-02 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: The description for this book, Meromorphic Functions and Analytic Curves. (AM-12), will be forthcoming.
Book Synopsis Calculus Reordered by : David M. Bressoud
Download or read book Calculus Reordered written by David M. Bressoud and published by Princeton University Press. This book was released on 2021-05-04 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Calculus Reordered takes readers on a remarkable journey through hundreds of years to tell the story of how calculus grew to what we know today. David Bressoud explains why calculus is credited to Isaac Newton and Gottfried Leibniz in the seventeenth century, and how its current structure is based on developments that arose in the nineteenth century. Bressoud argues that a pedagogy informed by the historical development of calculus presents a sounder way for students to learn this fascinating area of mathematics. Delving into calculus's birth in the Hellenistic Eastern Mediterranean--especially Syracuse in Sicily and Alexandria in Egypt--as well as India and the Islamic Middle East, Bressoud considers how calculus developed in response to essential questions emerging from engineering and astronomy. He looks at how Newton and Leibniz built their work on a flurry of activity that occurred throughout Europe, and how Italian philosophers such as Galileo Galilei played a particularly important role. In describing calculus's evolution, Bressoud reveals problems with the standard ordering of its curriculum: limits, differentiation, integration, and series. He contends instead that the historical order--which follows first integration as accumulation, then differentiation as ratios of change, series as sequences of partial sums, and finally limits as they arise from the algebra of inequalities--makes more sense in the classroom environment. Exploring the motivations behind calculus's discovery, Calculus Reordered highlights how this essential tool of mathematics came to be.
Book Synopsis Riemann Surfaces by Way of Complex Analytic Geometry by : Dror Varolin
Download or read book Riemann Surfaces by Way of Complex Analytic Geometry written by Dror Varolin and published by American Mathematical Soc.. This book was released on 2011-08-10 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book establishes the basic function theory and complex geometry of Riemann surfaces, both open and compact. Many of the methods used in the book are adaptations and simplifications of methods from the theories of several complex variables and complex analytic geometry and would serve as excellent training for mathematicians wanting to work in complex analytic geometry. After three introductory chapters, the book embarks on its central, and certainly most novel, goal of studying Hermitian holomorphic line bundles and their sections. Among other things, finite-dimensionality of spaces of sections of holomorphic line bundles of compact Riemann surfaces and the triviality of holomorphic line bundles over Riemann surfaces are proved, with various applications. Perhaps the main result of the book is Hormander's Theorem on the square-integrable solution of the Cauchy-Riemann equations. The crowning application is the proof of the Kodaira and Narasimhan Embedding Theorems for compact and open Riemann surfaces. The intended reader has had first courses in real and complex analysis, as well as advanced calculus and basic differential topology (though the latter subject is not crucial). As such, the book should appeal to a broad portion of the mathematical and scientific community. This book is the first to give a textbook exposition of Riemann surface theory from the viewpoint of positive Hermitian line bundles and Hormander $\bar \partial$ estimates. It is more analytical and PDE oriented than prior texts in the field, and is an excellent introduction to the methods used currently in complex geometry, as exemplified in J. P. Demailly's online but otherwise unpublished book ``Complex analytic and differential geometry.'' I used it for a one quarter course on Riemann surfaces and found it to be clearly written and self-contained. It not only fills a significant gap in the large textbook literature on Riemann surfaces but is also rather indispensible for those who would like to teach the subject from a differential geometric and PDE viewpoint. --Steven Zelditch
Book Synopsis The Calculus of Happiness by : Oscar E. Fernandez
Download or read book The Calculus of Happiness written by Oscar E. Fernandez and published by Princeton University Press. This book was released on 2019-07-09 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: How math holds the keys to improving one's health, wealth, and love life? What's the best diet for overall health and weight management? How can we change our finances to retire earlier? How can we maximize our chances of finding our soul mate? In The Calculus of Happiness, Oscar Fernandez shows us that math yields powerful insights into health, wealth, and love. Using only high-school-level math (precalculus with a dash of calculus), Fernandez guides us through several of the surprising results, including an easy rule of thumb for choosing foods that lower our risk for developing diabetes (and that help us lose weight too), simple "all-weather" investment portfolios with great returns, and math-backed strategies for achieving financial independence and searching for our soul mate. Moreover, the important formulas are linked to a dozen free online interactive calculators on the book's website, allowing one to personalize the equations. Fernandez uses everyday experiences--such as visiting a coffee shop--to provide context for his mathematical insights, making the math discussed more accessible, real-world, and relevant to our daily lives. Every chapter ends with a summary of essential lessons and takeaways, and for advanced math fans, Fernandez includes the mathematical derivations in the appendices. A nutrition, personal finance, and relationship how-to guide all in one, The Calculus of Happiness invites you to discover how empowering mathematics can be.
Book Synopsis Riemann Surfaces and Algebraic Curves by : Renzo Cavalieri
Download or read book Riemann Surfaces and Algebraic Curves written by Renzo Cavalieri and published by Cambridge University Press. This book was released on 2016-09-26 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.
Book Synopsis Galois Theory, Coverings, and Riemann Surfaces by : Askold Khovanskii
Download or read book Galois Theory, Coverings, and Riemann Surfaces written by Askold Khovanskii and published by Springer Science & Business Media. This book was released on 2013-09-11 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising analogy between the fundamental theorem of Galois theory and the classification of coverings over a topological space. The third part contains a geometric description of finite algebraic extensions of the field of meromorphic functions on a Riemann surface and provides an introduction to the topological Galois theory developed by the author. All results are presented in the same elementary and self-contained manner as classical Galois theory, making this book both useful and interesting to readers with a variety of backgrounds in mathematics, from advanced undergraduate students to researchers.