Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Functional Integrals
Download Functional Integrals full books in PDF, epub, and Kindle. Read online Functional Integrals ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Functional Integrals by : A.D. Egorov
Download or read book Functional Integrals written by A.D. Egorov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integration in infinitely dimensional spaces (continual integration) is a powerful mathematical tool which is widely used in a number of fields of modern mathematics, such as analysis, the theory of differential and integral equations, probability theory and the theory of random processes. This monograph is devoted to numerical approximation methods of continual integration. A systematic description is given of the approximate computation methods of functional integrals on a wide class of measures, including measures generated by homogeneous random processes with independent increments and Gaussian processes. Many applications to problems which originate from analysis, probability and quantum physics are presented. This book will be of interest to mathematicians and physicists, including specialists in computational mathematics, functional and statistical physics, nuclear physics and quantum optics.
Book Synopsis Functional Integration and Quantum Physics by : Barry Simon
Download or read book Functional Integration and Quantum Physics written by Barry Simon and published by American Mathematical Soc.. This book was released on 2005 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on probabilistic foundations of the Feynman-Kac formula. Starting with main examples of Gaussian processes (the Brownian motion, the oscillatory process, and the Brownian bridge), this book presents four different proofs of the Feynman-Kac formula.
Book Synopsis Functional Integrals in Quantum Field Theory and Statistical Physics by : V.N. Popov
Download or read book Functional Integrals in Quantum Field Theory and Statistical Physics written by V.N. Popov and published by Springer Science & Business Media. This book was released on 2001-11-30 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional integration is one of the most powerful methods of contempo rary theoretical physics, enabling us to simplify, accelerate, and make clearer the process of the theoretician's analytical work. Interest in this method and the endeavour to master it creatively grows incessantly. This book presents a study of the application of functional integration methods to a wide range of contemporary theoretical physics problems. The concept of a functional integral is introduced as a method of quantizing finite-dimensional mechanical systems, as an alternative to ordinary quantum mechanics. The problems of systems quantization with constraints and the manifolds quantization are presented here for the first time in a monograph. The application of the functional integration methods to systems with an infinite number of degrees of freedom allows one to uniquely introduce and formulate the diagram perturbation theory in quantum field theory and statistical physics. This approach is significantly simpler than the widely accepted method using an operator approach.
Book Synopsis A Modern Approach to Functional Integration by : John R. Klauder
Download or read book A Modern Approach to Functional Integration written by John R. Klauder and published by Springer Science & Business Media. This book was released on 2010-11-08 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text takes advantage of recent developments in the theory of path integration and attempts to make a major paradigm shift in how the art of functional integration is practiced. The techniques developed in the work will prove valuable to graduate students and researchers in physics, chemistry, mathematical physics, and applied mathematics who find it necessary to deal with solutions to wave equations, both quantum and beyond. A Modern Approach to Functional Integration offers insight into a number of contemporary research topics, which may lead to improved methods and results that cannot be found elsewhere in the textbook literature. Exercises are included in most chapters, making the book suitable for a one-semester graduate course on functional integration.
Book Synopsis Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets by : Hagen Kleinert
Download or read book Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets written by Hagen Kleinert and published by World Scientific. This book was released on 2009 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket.
Author :Cécile Dewitt-Morette Publisher :Springer Science & Business Media ISBN 13 :1489903194 Total Pages :436 pages Book Rating :4.4/5 (899 download)
Book Synopsis Functional Integration by : Cécile Dewitt-Morette
Download or read book Functional Integration written by Cécile Dewitt-Morette and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The program of the Institute covered several aspects of functional integration -from a robust mathematical foundation to many applications, heuristic and rigorous, in mathematics, physics, and chemistry. It included analytic and numerical computational techniques. One of the goals was to encourage cross-fertilization between these various aspects and disciplines. The first week was focused on quantum and classical systems with a finite number of degrees of freedom; the second week on field theories. During the first week the basic course, given by P. Cartier, was a presentation of a recent rigorous approach to functional integration which does not resort to discretization, nor to analytic continuation. It provides a definition of functional integrals simpler and more powerful than the original ones. Could this approach accommodate the works presented by the other lecturers? Although much remains to be done before answering "Yes," there seems to be no major obstacle along the road. The other courses taught during the first week presented: a) a solid introduction to functional numerical techniques (A. Sokal) and their applications to functional integrals encountered in chemistry (N. Makri). b) integrals based on Poisson processes and their applications to wave propagation (S. K. Foong), in particular a wave-restorer or wave-designer algorithm yielding the initial wave profile when one can only observe its distortion through a dissipative medium. c) the formulation of a quantum equivalence principle (H. Kleinert) which. given the flat space theory, yields a well-defined quantum theory in spaces with curvature and torsion.
Book Synopsis Mathematical Theory of Feynman Path Integrals by : Sergio A. Albeverio
Download or read book Mathematical Theory of Feynman Path Integrals written by Sergio A. Albeverio and published by Springer. This book was released on 2006-11-14 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Feynman path integrals integrals, suggested heuristically by Feynman in the 40s, have become the basis of much of contemporary physics, from non relativistic quantum mechanics to quantum fields, including gauge fields, gravitation, cosmology. Recently ideas based on Feynman path integrals have also played an important role in areas of mathematics like low dimensional topology and differential geometry, algebraic geometry, infinite dimensional analysis and geometry, and number theory. The 2nd edition of LNM 523 is based on the two first authors' mathematical approach of this theory presented in its 1st edition in 1976. To take care of the many developments which have occurred since then, an entire new chapter about the current forefront of research has been added. Except for this new chapter, the basic material and presentation of the first edition was mantained, a few misprints have been corrected. At the end of each chapter the reader will also find notes with further bibliographical information.
Book Synopsis Functional Integrals and Collective Excitations by : Victor Nikolaevich Popov
Download or read book Functional Integrals and Collective Excitations written by Victor Nikolaevich Popov and published by Cambridge University Press. This book was released on 1987 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the theory and selected applications of one of the most important mathematical tools used in the theoretical investigation of collective excitations in statistical physics, such as occur in superfluidity, superconductivity, plasma dynamics, superradiation, and in phase transitions.
Book Synopsis Functional Integration and Partial Differential Equations. (AM-109), Volume 109 by : Mark Iosifovich Freidlin
Download or read book Functional Integration and Partial Differential Equations. (AM-109), Volume 109 written by Mark Iosifovich Freidlin and published by Princeton University Press. This book was released on 2016-03-02 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses some aspects of the theory of partial differential equations from the viewpoint of probability theory. It is intended not only for specialists in partial differential equations or probability theory but also for specialists in asymptotic methods and in functional analysis. It is also of interest to physicists who use functional integrals in their research. The work contains results that have not previously appeared in book form, including research contributions of the author.
Book Synopsis Zeta Integrals, Schwartz Spaces and Local Functional Equations by : Wen-Wei Li
Download or read book Zeta Integrals, Schwartz Spaces and Local Functional Equations written by Wen-Wei Li and published by Springer. This book was released on 2018-11-02 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on a conjectural class of zeta integrals which arose from a program born in the work of Braverman and Kazhdan around the year 2000, the eventual goal being to prove the analytic continuation and functional equation of automorphic L-functions. Developing a general framework that could accommodate Schwartz spaces and the corresponding zeta integrals, the author establishes a formalism, states desiderata and conjectures, draws implications from these assumptions, and shows how known examples fit into this framework, supporting Sakellaridis' vision of the subject. The collected results, both old and new, and the included extensive bibliography, will be valuable to anyone who wishes to understand this program, and to those who are already working on it and want to overcome certain frequently occurring technical difficulties.
Book Synopsis Functional Integration by : Pierre Cartier
Download or read book Functional Integration written by Pierre Cartier and published by Cambridge University Press. This book was released on 2006-11-30 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this text, Cartier and DeWitt-Morette, using their complementary interests and expertise, successfully condense and apply the essentials of Functional Integration to a great variety of systems, showing this mathematically elusive technique to be a robust, user friendly and multipurpose tool.
Book Synopsis Functional Integrals and Statistical Physics by : S. G. Brush
Download or read book Functional Integrals and Statistical Physics written by S. G. Brush and published by . This book was released on 1959 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Mathematical Feynman Path Integrals And Their Applications by : Sonia Mazzucchi
Download or read book Mathematical Feynman Path Integrals And Their Applications written by Sonia Mazzucchi and published by World Scientific. This book was released on 2009-05-22 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas.This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author.Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals.
Book Synopsis Path Integrals and Quantum Processes by : Mark S. Swanson
Download or read book Path Integrals and Quantum Processes written by Mark S. Swanson and published by Courier Corporation. This book was released on 2014-02-19 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level, systematic presentation of path integral approach to calculating transition elements, partition functions, and source functionals. Covers Grassmann variables, field and gauge field theory, perturbation theory, and nonperturbative results. 1992 edition.
Book Synopsis Quantum Field Theory and Functional Integrals by : Nima Moshayedi
Download or read book Quantum Field Theory and Functional Integrals written by Nima Moshayedi and published by Springer Nature. This book was released on 2023-07-17 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Described here is Feynman's path integral approach to quantum mechanics and quantum field theory from a functional integral point of view. Therein lies the main focus of Euclidean field theory. The notion of Gaussian measure and the construction of the Wiener measure are covered. As well, the notion of classical mechanics and the Schrödinger picture of quantum mechanics are recalled. There, the equivalence to the path integral formalism is shown by deriving the quantum mechanical propagator from it. Additionally, an introduction to elements of constructive quantum field theory is provided for readers.
Book Synopsis Lectures on Functional Analysis and the Lebesgue Integral by : Vilmos Komornik
Download or read book Lectures on Functional Analysis and the Lebesgue Integral written by Vilmos Komornik and published by Springer. This book was released on 2016-06-03 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension. This approach leads naturally to the basic notions and theorems. Most results are illustrated by the small lp spaces. The Lebesgue integral, meanwhile, is treated via the direct approach of Frigyes Riesz, whose constructive definition of measurable functions leads to optimal, clear-cut versions of the classical theorems of Fubini-Tonelli and Radon-Nikodým. Lectures on Functional Analysis and the Lebesgue Integral presents the most important topics for students, with short, elegant proofs. The exposition style follows the Hungarian mathematical tradition of Paul Erdős and others. The order of the first two parts, functional analysis and the Lebesgue integral, may be reversed. In the third and final part they are combined to study various spaces of continuous and integrable functions. Several beautiful, but almost forgotten, classical theorems are also included. Both undergraduate and graduate students in pure and applied mathematics, physics and engineering will find this textbook useful. Only basic topological notions and results are used and various simple but pertinent examples and exercises illustrate the usefulness and optimality of most theorems. Many of these examples are new or difficult to localize in the literature, and the original sources of most notions and results are indicated to help the reader understand the genesis and development of the field.
Book Synopsis Techniques and Applications of Path Integration by : L. S. Schulman
Download or read book Techniques and Applications of Path Integration written by L. S. Schulman and published by Courier Corporation. This book was released on 2012-10-10 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduates and graduate students, this text develops the techniques of path integration and deals with applications, covering a host of illustrative examples. 26 figures. 1981 edition.