Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Functional Calculus Of Pseud Differential Boundary Problems
Download Functional Calculus Of Pseud Differential Boundary Problems full books in PDF, epub, and Kindle. Read online Functional Calculus Of Pseud Differential Boundary Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Functional Calculus of Pseudodifferential Boundary Problems by : Gerd Grubb
Download or read book Functional Calculus of Pseudodifferential Boundary Problems written by Gerd Grubb and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pseudodifferential methods are central to the study of partial differential equations, because they permit an "algebraization." The main purpose of this book is to set up an operational calculus for operators defined from differential and pseudodifferential boundary values problems via a resolvent construction. A secondary purposed is to give a complete treatment of the properties of the calculus of pseudodifferential boundary problems with transmission, both the first version by Boutet de Monvel (brought completely up to date in this edition) and in version containing a parameter running in an unbounded set. And finally, the book presents some applications to evolution problems, index theory, fractional powers, spectral theory and singular perturbation theory. Thus the book’s improved proofs and modern points of view will be useful to research mathematicians and to graduate students studying partial differential equations and pseudodifferential operators.
Book Synopsis Functional Calculus of Pseudodifferential Boundary Problems by : Gerd Grubb
Download or read book Functional Calculus of Pseudodifferential Boundary Problems written by Gerd Grubb and published by . This book was released on 1996-01-26 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis On the Functional Calculus of Pseudo-differential Boundary Problems by : G. Grubb
Download or read book On the Functional Calculus of Pseudo-differential Boundary Problems written by G. Grubb and published by . This book was released on 1983 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Theory Of The Navier-stokes Equations by : John G Heywood
Download or read book Theory Of The Navier-stokes Equations written by John G Heywood and published by World Scientific. This book was released on 1998-05-30 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects the articles presented at the Third International Conference on “The Navier-Stokes Equations: Theory and Numerical Methods”, held in Oberwolfach, Germany. The articles are important contributions to a wide variety of topics in the Navier-Stokes theory: general boundary conditions, flow exterior to an obstacle, conical boundary points, the controllability of solutions, compressible flow, non-Newtonian flow, magneto-hydrodynamics, thermal convection, the interaction of fluids with elastic solids, the regularity of solutions, and Rothe's method of approximation.
Book Synopsis Microlocal Analysis and Applications by : Lamberto Cattabriga
Download or read book Microlocal Analysis and Applications written by Lamberto Cattabriga and published by Springer. This book was released on 2006-11-14 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: CONTENTS: J.M. Bony: Analyse microlocale des equations aux derivees partielles non lineaires.- G.G. Grubb: Parabolic pseudo-differential boundary problems and applications.- L. H|rmander: Quadratic hyperbolic operators.- H. Komatsu: Microlocal analysis in Gevrey classes and in complex domains.- J. Sj|strand: Microlocal analysis for the periodic magnetic Schr|dinger equation and related questions.
Book Synopsis Encyclopaedia of Mathematics by : Michiel Hazewinkel
Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ENCYCLOPAEDIA OF MA THEMA TICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Book Synopsis Recent Developments of Mathematical Fluid Mechanics by : Herbert Amann
Download or read book Recent Developments of Mathematical Fluid Mechanics written by Herbert Amann and published by Birkhäuser. This book was released on 2016-03-17 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this proceeding is addressed to present recent developments of the mathematical research on the Navier-Stokes equations, the Euler equations and other related equations. In particular, we are interested in such problems as: 1) existence, uniqueness and regularity of weak solutions2) stability and its asymptotic behavior of the rest motion and the steady state3) singularity and blow-up of weak and strong solutions4) vorticity and energy conservation5) fluid motions around the rotating axis or outside of the rotating body6) free boundary problems7) maximal regularity theorem and other abstract theorems for mathematical fluid mechanics.
Book Synopsis Partial Differential Equations and Mathematical Physics by : Lars Hörmander
Download or read book Partial Differential Equations and Mathematical Physics written by Lars Hörmander and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: On March 17-19 and May 19-21,1995, analysis seminars were organized jointly at the universities of Copenhagen and Lund, under the heading "Danish-Swedish Analysis Seminar". The main topic was partial differen tial equations and related problems of mathematical physics. The lectures given are presented in this volume, some as short abstracts and some as quite complete expositions or survey papers. They span over a large vari ety of topics. The most frequently occurring theme is the use of microlocal analysis which is now important also in the study of non-linear differential equations although it originated entirely within the linear theory. Perhaps it is less surprising that microlocal analysis has proved to be useful in the study of mathematical problems of classical quantum mechanics, for it re ceived a substantial input of ideas from that field. The scientific committee for the invitation of speakers consisted of Gerd Grubb in Copenhagen, Lars Hormander and Anders MeHn in Lund, and Jo hannes Sjostrand in Paris. Lars Hormander and Anders Melin have edited the proceedings. They were hosts of the seminar days in Lund while Gerd Grubb was the host in Copenhagen. Financial support was obtained from the mathematics departments in Copenhagen and Lund, CNRS in France, the Danish and Swedish Na tional Research Councils, Gustaf Sigurd Magnuson's foundation at the Royal Swedish Academy of Sciences, and the Wenner-Gren foundation in Stockholm. We want to thank all these organisations for their support
Book Synopsis Approaches to Singular Analysis by : Juan B. Gil
Download or read book Approaches to Singular Analysis written by Juan B. Gil and published by Birkhäuser. This book was released on 2012-12-06 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection presents various approaches to analytic problems that arise in the context of singular spaces. It contains articles offering introductions to various pseudodifferential calculi and discussions of relations between them, plus invited papers from mathematicians who have made significant contributions to this field
Book Synopsis Louis Boutet de Monvel, Selected Works by : Victor W. Guillemin
Download or read book Louis Boutet de Monvel, Selected Works written by Victor W. Guillemin and published by Birkhäuser. This book was released on 2017-05-05 with total page 855 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a selection of articles by Louis Boutet de Monvel and presents his contributions to the theory of partial differential equations and analysis. The works selected here reveal his central role in the development of his field, including three cornerstones: firstly, analytic pseudodifferential operators, which have become a fundamental aspect of analytic microlocal analysis, and secondly the Boutet de Monvel calculus for boundary problems for elliptic partial differential operators, which is still an important tool also in index theory. Thirdly, Boutet de Monvel was one of the first people to recognize the importance of the existence of generalized functions, whose singularities are concentrated on a single ray in phase space, which led him to make essential contributions to hypoelliptic operators and to a very successful and influential calculus of Toeplitz operators with applications to spectral and index theory. Other topics treated here include microlocal analysis, star products and deformation quantization as well as problems in several complex variables, index theory and geometric quantization. This book will appeal to both experts in the field and students who are new to this subject.
Book Synopsis Partial Differential Operators and Mathematical Physics by : Michael Demuth
Download or read book Partial Differential Operators and Mathematical Physics written by Michael Demuth and published by Birkhäuser. This book was released on 2012-12-06 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains the contributions to the conference on "Partial Differential Equations" held in Holzhau (Germany) in July 1994, where outstanding specialists from analysis, geometry and mathematical physics reviewed recent progress and new interactions in these areas. Topics of special interest at the conference and which now form the core of this volume are hyperbolic operators, spectral theory for elliptic operators, eta-invariant, singular configura- tions and asymptotics, Bergman-kernel, attractors of non-autonomous evolution equations, pseudo-differential boundary value problems, Mellin pseudo- differential operators, approximation and stability problems for elliptic operators, and operator determinants. In spectral theory adiabatic and semiclassical limits, Dirichlet decoupling and domain perturbations, capacity of obstacles, limiting absorption problems, N-body scattering, and number of bound states are considered. Schrödinger operators are studied with magnetic fields, with random and with many-body potentials, and for nonlinear problems. In semigroup theory the Feller property, errors for product formulas, fractional powers of generators, and functional integration for relativistic semigroups are analyzed.
Book Synopsis Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators by : Nicolas Lerner
Download or read book Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators written by Nicolas Lerner and published by Springer Science & Business Media. This book was released on 2011-01-30 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the study of pseudo-di?erential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. We have tried here to expose the most recent developments of the theory with its applications to local solvability and semi-classical estimates for non-selfadjoint operators. The?rstchapter,Basic Notions of Phase Space Analysis,isintroductoryand gives a presentation of very classical classes of pseudo-di?erential operators, along with some basic properties. As an illustration of the power of these methods, we give a proof of propagation of singularities for real-principal type operators (using aprioriestimates,andnotFourierintegraloperators),andweintroducethereader to local solvability problems. That chapter should be useful for a reader, say at the graduate level in analysis, eager to learn some basics on pseudo-di?erential operators. The second chapter, Metrics on the Phase Space begins with a review of symplectic algebra, Wigner functions, quantization formulas, metaplectic group and is intended to set the basic study of the phase space. We move forward to the more general setting of metrics on the phase space, following essentially the basic assumptions of L. H ̈ ormander (Chapter 18 in the book [73]) on this topic.
Book Synopsis Asymptotic Formulae in Spectral Geometry by : Peter B. Gilkey
Download or read book Asymptotic Formulae in Spectral Geometry written by Peter B. Gilkey and published by CRC Press. This book was released on 2003-12-17 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: A great deal of progress has been made recently in the field of asymptotic formulas that arise in the theory of Dirac and Laplace type operators. Asymptotic Formulae in Spectral Geometry collects these results and computations into one book. Written by a leading pioneer in the field, it focuses on the functorial and special cases methods of computing asymptotic heat trace and heat content coefficients in the heat equation. It incorporates the work of many authors into the presentation, and includes a complete bibliography that serves as a roadmap to the literature on the subject. Geometers, mathematical physicists, and analysts alike will undoubtedly find this book to be the definitive book on the subject
Book Synopsis Proceedings of the St. Petersburg Mathematical Society by : Nina Nikolaevna Uralʹt͡seva
Download or read book Proceedings of the St. Petersburg Mathematical Society written by Nina Nikolaevna Uralʹt͡seva and published by American Mathematical Soc.. This book was released on with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Pseudodifferential and Singular Integral Operators by : Helmut Abels
Download or read book Pseudodifferential and Singular Integral Operators written by Helmut Abels and published by Walter de Gruyter. This book was released on 2011-12-23 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their applications to partial differential equations. In the first chapters, the necessary material on Fourier transformation and distribution theory is presented. Subsequently the basic calculus of pseudodifferential operators on the n-dimensional Euclidean space is developed. In order to present the deep results on regularity questions for partial differential equations, an introduction to the theory of singular integral operators is given - which is of interest for its own. Moreover, to get a wide range of applications, one chapter is devoted to the modern theory of Besov and Bessel potential spaces. In order to demonstrate some fundamental approaches and the power of the theory, several applications to wellposedness and regularity question for elliptic and parabolic equations are presented throughout the book. The basic notation of functional analysis needed in the book is introduced and summarized in the appendix. The text is comprehensible for students of mathematics and physics with a basic education in analysis.