Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Function Spaces And Inequalities
Download Function Spaces And Inequalities full books in PDF, epub, and Kindle. Read online Function Spaces And Inequalities ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Function Spaces and Potential Theory by : David R. Adams
Download or read book Function Spaces and Potential Theory written by David R. Adams and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: "..carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society
Book Synopsis Function Spaces and Inequalities by : Pankaj Jain
Download or read book Function Spaces and Inequalities written by Pankaj Jain and published by Springer. This book was released on 2017-10-20 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features original research and survey articles on the topics of function spaces and inequalities. It focuses on (variable/grand/small) Lebesgue spaces, Orlicz spaces, Lorentz spaces, and Morrey spaces and deals with mapping properties of operators, (weighted) inequalities, pointwise multipliers and interpolation. Moreover, it considers Sobolev–Besov and Triebel–Lizorkin type smoothness spaces. The book includes papers by leading international researchers, presented at the International Conference on Function Spaces and Inequalities, held at the South Asian University, New Delhi, India, on 11–15 December 2015, which focused on recent developments in the theory of spaces with variable exponents. It also offers further investigations concerning Sobolev-type embeddings, discrete inequalities and harmonic analysis. Each chapter is dedicated to a specific topic and written by leading experts, providing an overview of the subject and stimulating future research.
Book Synopsis Integral Operators in Non-Standard Function Spaces by : Vakhtang Kokilashvili
Download or read book Integral Operators in Non-Standard Function Spaces written by Vakhtang Kokilashvili and published by Birkhäuser. This book was released on 2016-05-11 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, the result of the authors' long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Hölder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them. The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book's most distinctive features is that the majority of the statements proved here are in the form of criteria. The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematics and prospective students.
Book Synopsis Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces by : Michael Ulbrich
Download or read book Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces written by Michael Ulbrich and published by SIAM. This book was released on 2011-07-28 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive treatment of semismooth Newton methods in function spaces: from their foundations to recent progress in the field. This book is appropriate for researchers and practitioners in PDE-constrained optimization, nonlinear optimization and numerical analysis, as well as engineers interested in the current theory and methods for solving variational inequalities.
Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis
Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Book Synopsis Spectral Theory, Function Spaces and Inequalities by : B. Malcolm Brown
Download or read book Spectral Theory, Function Spaces and Inequalities written by B. Malcolm Brown and published by Springer Science & Business Media. This book was released on 2011-11-06 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a collection of contributed papers which focus on recent results in areas of differential equations, function spaces, operator theory and interpolation theory. In particular, it covers current work on measures of non-compactness and real interpolation, sharp Hardy-Littlewood-Sobolev inequalites, the HELP inequality, error estimates and spectral theory of elliptic operators, pseudo differential operators with discontinuous symbols, variable exponent spaces and entropy numbers. These papers contribute to areas of analysis which have been and continue to be heavily influenced by the leading British analysts David Edmunds and Des Evans. This book marks their respective 80th and 70th birthdays.
Book Synopsis Sobolev Spaces in Mathematics I by : Vladimir Maz'ya
Download or read book Sobolev Spaces in Mathematics I written by Vladimir Maz'ya and published by Springer. This book was released on 2010-11-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume mark’s the centenary of the birth of the outstanding mathematician of the 20th century, Sergey Sobolev. It includes new results on the latest topics of the theory of Sobolev spaces, partial differential equations, analysis and mathematical physics.
Book Synopsis Functional Equations and Inequalities by : Themistocles RASSIAS
Download or read book Functional Equations and Inequalities written by Themistocles RASSIAS and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an extensive study of some of the most important topics of current interest in functional equations and inequalities. Subjects dealt with include: a Pythagorean functional equation, a functional definition of trigonometric functions, the functional equation of the square root spiral, a conditional Cauchy functional equation, an iterative functional equation, the Hille-type functional equation, the polynomial-like iterative functional equation, distribution of zeros and inequalities for zeros of algebraic polynomials, a qualitative study of Lobachevsky's complex functional equation, functional inequalities in special classes of functions, replicativity and function spaces, normal distributions, some difference equations, finite sums, decompositions of functions, harmonic functions, set-valued quasiconvex functions, the problems of expressibility in some extensions of free groups, Aleksandrov problem and mappings which preserve distances, Ulam's problem, stability of some functional equation for generalized trigonometric functions, Hyers-Ulam stability of Hosszú's equation, superstability of a functional equation, and some demand functions in a duopoly market with advertising. Audience: This book will be of interest to mathematicians and graduate students whose work involves real functions, functions of a complex variable, functional analysis, integral transforms, and operational calculus.
Book Synopsis Weighted Inequalities In Lorentz And Orlicz Spaces by : Vakhtang Kokilashvili
Download or read book Weighted Inequalities In Lorentz And Orlicz Spaces written by Vakhtang Kokilashvili and published by World Scientific. This book was released on 1991-12-31 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as a survey of latest results on weighted inequalities in Lorentz, Orlicz spaces and Zygmund classes. During the last few years they have become one of the mostdeveloped offshoots of the theory of the harmonic analysis operators. Up to now there has been no monograph devoted to these questions, the results are mostly scattered in various journals and a part of the book consists of results not published anywhere else. Many of theorems presented have only previously been published in Russian.
Download or read book Sobolev Spaces written by Vladimir Maz'ya and published by Springer Science & Business Media. This book was released on 2011-02-11 with total page 882 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author’s involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979, 1980). In the Springer volume “Sobolev Spaces”, published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area.
Author :Dragoslav S. Mitrinovic Publisher :Springer Science & Business Media ISBN 13 :9780792313304 Total Pages :606 pages Book Rating :4.3/5 (133 download)
Book Synopsis Inequalities Involving Functions and Their Integrals and Derivatives by : Dragoslav S. Mitrinovic
Download or read book Inequalities Involving Functions and Their Integrals and Derivatives written by Dragoslav S. Mitrinovic and published by Springer Science & Business Media. This book was released on 1991-07-31 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a comprehensive, up-to-date survey of inequalities that involve a relationship between a function and its derivatives or integrals. The book is divided into 18 chapters, some of which are devoted to specific inequalities such as those of Kolmogorov-Landau, Wirtinger, Hardy, Carlson, Hilbert, Caplygin, Lyapunov, Gronwell and others. Over 800 references to the literature are cited; proofs are given when these provide insight into the general methods involved; and applications, especially to the theory of differential equations, are mentioned when appropriate. This volume will interest all those whose work involves differential and integral equations. It can also be recommended as a supplementary text.
Author :Silvestru Sever Dragomir Publisher :Springer Science & Business Media ISBN 13 :1461417791 Total Pages :121 pages Book Rating :4.4/5 (614 download)
Book Synopsis Operator Inequalities of Ostrowski and Trapezoidal Type by : Silvestru Sever Dragomir
Download or read book Operator Inequalities of Ostrowski and Trapezoidal Type written by Silvestru Sever Dragomir and published by Springer Science & Business Media. This book was released on 2011-12-08 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inequalities of Ostrowski and Trapezoidal Type for Functions of Selfadjoint Operators on Hilbert Spaces presents recent results concerning Ostrowski and Trapezoidal type inequalities for continuous functions of bounded Selfadjoint operators on complex Hilbert spaces. The first chapter recalls some fundamental facts concerning bounded Selfadjoint operators on complex Hilbert spaces. The generalized Schwarz’s inequality for positive Selfadjoint operators as well as some results for the spectrum of this class of operators are presented. The author also introduces and explores the fundamental results for polynomials in a linear operator, continuous functions of selfadjoint operators that will play a central role throughout the book. The following chapter is devoted to the Ostrowski’s type inequalities, which provide sharp error estimates in approximating the value of a function by its integral mean and can be used to obtain a priory error bounds for different quadrature rules in approximating the Riemann integral by different Riemann sums. The author also presents recent results extending Ostrowski inequality in various directions for continuous functions of selfadjoint operators in complex Hilbert spaces. The final chapter illustrates recent results obtained in extending trapezoidal type inequality in various directions for continuous functions of selfadjoint operators in complex Hilbert spaces. Applications for mid-point inequalities and some elementary functions of operators as also provided. This book is intended for use by researchers in various fields of Linear Operator Theory and Mathematical Inequalities. As well as postgraduate students and scientists applying inequalities in their specific areas.
Book Synopsis Maximal Function Methods for Sobolev Spaces by : Juha Kinnunen
Download or read book Maximal Function Methods for Sobolev Spaces written by Juha Kinnunen and published by American Mathematical Soc.. This book was released on 2021-08-02 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p p-Laplace equation and the use of maximal function techniques is this context are discussed. The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.
Book Synopsis Real Analysis by : Gerald B. Folland
Download or read book Real Analysis written by Gerald B. Folland and published by John Wiley & Sons. This book was released on 2013-06-11 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.
Book Synopsis Functional Inequalities: New Perspectives and New Applications by : Nassif Ghoussoub
Download or read book Functional Inequalities: New Perspectives and New Applications written by Nassif Ghoussoub and published by American Mathematical Soc.. This book was released on 2013-04-09 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to "systematic" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces. As such, improvements of Hardy and Hardy-Rellich type inequalities involving radially symmetric weights are variational manifestations of Sturm's theory on the oscillatory behavior of certain ordinary differential equations. On the other hand, most geometric inequalities, including those of Sobolev and Log-Sobolev type, are simply expressions of the convexity of certain free energy functionals along the geodesics on the Wasserstein manifold of probability measures equipped with the optimal mass transport metric. Caffarelli-Kohn-Nirenberg and Hardy-Rellich-Sobolev type inequalities are then obtained by interpolating the above two classes of inequalities via the classical ones of Hölder. The subtle Moser-Onofri-Aubin inequalities on the two-dimensional sphere are connected to Liouville type theorems for planar mean field equations."--Publisher's website.
Book Synopsis Function Spaces and Partial Differential Equations by : Ali Taheri
Download or read book Function Spaces and Partial Differential Equations written by Ali Taheri and published by Oxford Lecture Mathematics and. This book was released on 2015 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seemingly unrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hinted exercises. There are well over 700 exercises of varying level leading the reader from the basics to the most advanced levels and frontiers of research. The book can be used either for independent study or for a year-long graduate level course. In fact it has its origin in a year-long graduate course taught by the author in Oxford in 2004-5 and various parts of it in other institutions later on. A good number of distinguished researchers and faculty in mathematics worldwide have started their research career from the course that formed the basis for this book.
Book Synopsis Hardy Inequalities on Homogeneous Groups by : Michael Ruzhansky
Download or read book Hardy Inequalities on Homogeneous Groups written by Michael Ruzhansky and published by Springer. This book was released on 2019-07-02 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.