Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Foundations Of Probability And Statistics
Download Foundations Of Probability And Statistics full books in PDF, epub, and Kindle. Read online Foundations Of Probability And Statistics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Foundations of Probability by : Alfred Renyi
Download or read book Foundations of Probability written by Alfred Renyi and published by Courier Corporation. This book was released on 2007-01-01 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing many innovations in content and methods, this book involves the foundations, basic concepts, and fundamental results of probability theory. Geared toward readers seeking a firm basis for study of mathematical statistics or information theory, it also covers the mathematical notions of experiments and independence. 1970 edition.
Book Synopsis Game-Theoretic Foundations for Probability and Finance by : Glenn Shafer
Download or read book Game-Theoretic Foundations for Probability and Finance written by Glenn Shafer and published by John Wiley & Sons. This book was released on 2019-03-21 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Game-theoretic probability and finance come of age Glenn Shafer and Vladimir Vovk’s Probability and Finance, published in 2001, showed that perfect-information games can be used to define mathematical probability. Based on fifteen years of further research, Game-Theoretic Foundations for Probability and Finance presents a mature view of the foundational role game theory can play. Its account of probability theory opens the way to new methods of prediction and testing and makes many statistical methods more transparent and widely usable. Its contributions to finance theory include purely game-theoretic accounts of Ito’s stochastic calculus, the capital asset pricing model, the equity premium, and portfolio theory. Game-Theoretic Foundations for Probability and Finance is a book of research. It is also a teaching resource. Each chapter is supplemented with carefully designed exercises and notes relating the new theory to its historical context. Praise from early readers “Ever since Kolmogorov's Grundbegriffe, the standard mathematical treatment of probability theory has been measure-theoretic. In this ground-breaking work, Shafer and Vovk give a game-theoretic foundation instead. While being just as rigorous, the game-theoretic approach allows for vast and useful generalizations of classical measure-theoretic results, while also giving rise to new, radical ideas for prediction, statistics and mathematical finance without stochastic assumptions. The authors set out their theory in great detail, resulting in what is definitely one of the most important books on the foundations of probability to have appeared in the last few decades.” – Peter Grünwald, CWI and University of Leiden “Shafer and Vovk have thoroughly re-written their 2001 book on the game-theoretic foundations for probability and for finance. They have included an account of the tremendous growth that has occurred since, in the game-theoretic and pathwise approaches to stochastic analysis and in their applications to continuous-time finance. This new book will undoubtedly spur a better understanding of the foundations of these very important fields, and we should all be grateful to its authors.” – Ioannis Karatzas, Columbia University
Book Synopsis Probability And Statistics For Economists by : Yongmiao Hong
Download or read book Probability And Statistics For Economists written by Yongmiao Hong and published by World Scientific Publishing Company. This book was released on 2017-11-02 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Statistics have been widely used in various fields of science, including economics. Like advanced calculus and linear algebra, probability and statistics are indispensable mathematical tools in economics. Statistical inference in economics, namely econometric analysis, plays a crucial methodological role in modern economics, particularly in empirical studies in economics.This textbook covers probability theory and statistical theory in a coherent framework that will be useful in graduate studies in economics, statistics and related fields. As a most important feature, this textbook emphasizes intuition, explanations and applications of probability and statistics from an economic perspective.
Book Synopsis Foundations and Philosophy of Epistemic Applications of Probability Theory by : W.L. Harper
Download or read book Foundations and Philosophy of Epistemic Applications of Probability Theory written by W.L. Harper and published by Springer Science & Business Media. This book was released on 1976 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of an International Research Colloquium held at the University of Western Ontario, 10-13 May 1973.
Book Synopsis Foundations and Applications of Statistics by : Randall Pruim
Download or read book Foundations and Applications of Statistics written by Randall Pruim and published by American Mathematical Soc.. This book was released on 2018-04-04 with total page 842 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment R is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations. In the second edition, the R code has been updated throughout to take advantage of new R packages and to illustrate better coding style. New sections have been added covering bootstrap methods, multinomial and multivariate normal distributions, the delta method, numerical methods for Bayesian inference, and nonlinear least squares. Also, the use of matrix algebra has been expanded, but remains optional, providing instructors with more options regarding the amount of linear algebra required.
Book Synopsis Probability for Statistics and Machine Learning by : Anirban DasGupta
Download or read book Probability for Statistics and Machine Learning written by Anirban DasGupta and published by Springer Science & Business Media. This book was released on 2011-05-17 with total page 796 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.
Book Synopsis Random Phenomena by : Babatunde A. Ogunnaike
Download or read book Random Phenomena written by Babatunde A. Ogunnaike and published by CRC Press. This book was released on 2011-05-20 with total page 1061 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many of the problems that engineers face involve randomly varying phenomena of one sort or another. However, if characterized properly, even such randomness and the resulting uncertainty are subject to rigorous mathematical analysis. Taking into account the uniquely multidisciplinary demands of 21st-century science and engineering, Random Phenomena: Fundamentals of Probability and Statistics for Engineers provides students with a working knowledge of how to solve engineering problems that involve randomly varying phenomena. Basing his approach on the principle of theoretical foundations before application, Dr. Ogunnaike presents a classroom-tested course of study that explains how to master and use probability and statistics appropriately to deal with uncertainty in standard problems and those that are new and unfamiliar. Giving students the tools and confidence to formulate practical solutions to problems, this book offers many useful features, including: Unique case studies to illustrate the fundamentals and applications of probability and foster understanding of the random variable and its distribution Examples of development, selection, and analysis of probability models for specific random variables Presentation of core concepts and ideas behind statistics and design of experiments Selected "special topics," including reliability and life testing, quality assurance and control, and multivariate analysis As classic scientific boundaries continue to be restructured, the use of engineering is spilling over into more non-traditional areas, ranging from molecular biology to finance. This book emphasizes fundamentals and a "first principles" approach to deal with this evolution. It illustrates theory with practical examples and case studies, equipping readers to deal with a wide range of problems beyond those in the book. About the Author: Professor Ogunnaike is Interim Dean of Engineering at the University of Delaware. He is the recipient of the 2008 American Automatic Control Council's Control Engineering Practice Award, the ISA's Donald P. Eckman Education Award, the Slocomb Excellence in Teaching Award, and was elected into the US National Academy of Engineering in 2012.
Book Synopsis Foundations of Modern Probability by : Olav Kallenberg
Download or read book Foundations of Modern Probability written by Olav Kallenberg and published by Springer Science & Business Media. This book was released on 2002-01-08 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of this single volume on the theory of probability has become a highly-praised standard reference for many areas of probability theory. Chapters from the first edition have been revised and corrected, and this edition contains four new chapters. New material covered includes multivariate and ratio ergodic theorems, shift coupling, Palm distributions, Harris recurrence, invariant measures, and strong and weak ergodicity.
Book Synopsis Probability, Statistics, and Truth by : Richard Von Mises
Download or read book Probability, Statistics, and Truth written by Richard Von Mises and published by Courier Corporation. This book was released on 1981-01-01 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive study of probability considers the approaches of Pascal, Laplace, Poisson, and others. It also discusses Laws of Large Numbers, the theory of errors, and other relevant topics.
Book Synopsis Probability and Statistical Models by : Arjun K. Gupta
Download or read book Probability and Statistical Models written by Arjun K. Gupta and published by Springer Science & Business Media. This book was released on 2010-08-26 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: With an emphasis on models and techniques, this textbook introduces many of the fundamental concepts of stochastic modeling that are now a vital component of almost every scientific investigation. In particular, emphasis is placed on laying the foundation for solving problems in reliability, insurance, finance, and credit risk. The material has been carefully selected to cover the basic concepts and techniques on each topic, making this an ideal introductory gateway to more advanced learning. With exercises and solutions to selected problems accompanying each chapter, this textbook is for a wide audience including advanced undergraduate and beginning-level graduate students, researchers, and practitioners in mathematics, statistics, engineering, and economics.
Download or read book Good Thinking written by Irving J. Good and published by Courier Corporation. This book was released on 2009-11-18 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: These sparkling essays by a gifted thinker offer philosophical views on the roots of statistical interference. A pioneer in the early development of computing, Irving J. Good made fundamental contributions to the theory of Bayesian inference and was a key member of the team that broke the German Enigma code during World War II. Good maintains that a grasp of probability is essential to answering both practical and philosophical questions. This compilation of his most accessible works concentrates on philosophical rather than mathematical subjects, ranging from rational decisions, randomness, and the nature of probability to operational research, artificial intelligence, cognitive psychology, and chess. These twenty-three self-contained articles represent the author's work in a variety of fields but are unified by a consistently rational approach. Five closely related sections explore Bayesian rationality; probability; corroboration, hypothesis testing, and simplicity; information and surprise; and causality and explanation. A comprehensive index, abundant references, and a bibliography refer readers to classic and modern literature. Good's thought-provoking observations and memorable examples provide scientists, mathematicians, and historians of science with a coherent view of probability and its applications.
Book Synopsis The Foundations of Statistics by : Leonard J. Savage
Download or read book The Foundations of Statistics written by Leonard J. Savage and published by Courier Corporation. This book was released on 2012-08-29 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic analysis of the foundations of statistics and development of personal probability, one of the greatest controversies in modern statistical thought. Revised edition. Calculus, probability, statistics, and Boolean algebra are recommended.
Book Synopsis Probability, Statistics, and Data by : Darrin Speegle
Download or read book Probability, Statistics, and Data written by Darrin Speegle and published by CRC Press. This book was released on 2021-11-26 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a fresh approach to a calculus based, first course in probability and statistics, using R throughout to give a central role to data and simulation. The book introduces probability with Monte Carlo simulation as an essential tool. Simulation makes challenging probability questions quickly accessible and easily understandable. Mathematical approaches are included, using calculus when appropriate, but are always connected to experimental computations. Using R and simulation gives a nuanced understanding of statistical inference. The impact of departure from assumptions in statistical tests is emphasized, quantified using simulations, and demonstrated with real data. The book compares parametric and non-parametric methods through simulation, allowing for a thorough investigation of testing error and power. The text builds R skills from the outset, allowing modern methods of resampling and cross validation to be introduced along with traditional statistical techniques. Fifty-two data sets are included in the complementary R package fosdata. Most of these data sets are from recently published papers, so that you are working with current, real data, which is often large and messy. Two central chapters use powerful tidyverse tools (dplyr, ggplot2, tidyr, stringr) to wrangle data and produce meaningful visualizations. Preliminary versions of the book have been used for five semesters at Saint Louis University, and the majority of the more than 400 exercises have been classroom tested.
Book Synopsis Probability and Statistics by : Michael J. Evans
Download or read book Probability and Statistics written by Michael J. Evans and published by Macmillan. This book was released on 2004 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.
Book Synopsis Probability and Conditional Expectation by : Rolf Steyer
Download or read book Probability and Conditional Expectation written by Rolf Steyer and published by John Wiley & Sons. This book was released on 2017-03-10 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Conditional Expectations bridges the gap between books on probability theory and statistics by providing the probabilistic concepts estimated and tested in analysis of variance, regression analysis, factor analysis, structural equation modeling, hierarchical linear models and analysis of qualitative data. The authors emphasize the theory of conditional expectations that is also fundamental to conditional independence and conditional distributions. Probability and Conditional Expectations Presents a rigorous and detailed mathematical treatment of probability theory focusing on concepts that are fundamental to understand what we are estimating in applied statistics. Explores the basics of random variables along with extensive coverage of measurable functions and integration. Extensively treats conditional expectations also with respect to a conditional probability measure and the concept of conditional effect functions, which are crucial in the analysis of causal effects. Is illustrated throughout with simple examples, numerous exercises and detailed solutions. Provides website links to further resources including videos of courses delivered by the authors as well as R code exercises to help illustrate the theory presented throughout the book.
Book Synopsis Foundations of Statistics by : D.G. Rees
Download or read book Foundations of Statistics written by D.G. Rees and published by CRC Press. This book was released on 1987-09-01 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides a through, straightforward first course on basics statistics. Emphasizing the application of theory, it contains 200 fully worked examples and supplies exercises in each chapter-complete with hints and answers.
Book Synopsis The Foundations of Statistics: A Simulation-based Approach by : Shravan Vasishth
Download or read book The Foundations of Statistics: A Simulation-based Approach written by Shravan Vasishth and published by Springer Science & Business Media. This book was released on 2010-11-11 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistics and hypothesis testing are routinely used in areas (such as linguistics) that are traditionally not mathematically intensive. In such fields, when faced with experimental data, many students and researchers tend to rely on commercial packages to carry out statistical data analysis, often without understanding the logic of the statistical tests they rely on. As a consequence, results are often misinterpreted, and users have difficulty in flexibly applying techniques relevant to their own research — they use whatever they happen to have learned. A simple solution is to teach the fundamental ideas of statistical hypothesis testing without using too much mathematics. This book provides a non-mathematical, simulation-based introduction to basic statistical concepts and encourages readers to try out the simulations themselves using the source code and data provided (the freely available programming language R is used throughout). Since the code presented in the text almost always requires the use of previously introduced programming constructs, diligent students also acquire basic programming abilities in R. The book is intended for advanced undergraduate and graduate students in any discipline, although the focus is on linguistics, psychology, and cognitive science. It is designed for self-instruction, but it can also be used as a textbook for a first course on statistics. Earlier versions of the book have been used in undergraduate and graduate courses in Europe and the US. ”Vasishth and Broe have written an attractive introduction to the foundations of statistics. It is concise, surprisingly comprehensive, self-contained and yet quite accessible. Highly recommended.” Harald Baayen, Professor of Linguistics, University of Alberta, Canada ”By using the text students not only learn to do the specific things outlined in the book, they also gain a skill set that empowers them to explore new areas that lie beyond the book’s coverage.” Colin Phillips, Professor of Linguistics, University of Maryland, USA