Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
First Course In Statistical Inference
Download First Course In Statistical Inference full books in PDF, epub, and Kindle. Read online First Course In Statistical Inference ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis First Course in Statistical Inference by : Jonathan Gillard
Download or read book First Course in Statistical Inference written by Jonathan Gillard and published by . This book was released on 2020 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a modern and accessible introduction to Statistical Inference, the science of inferring key information from data. Aimed at beginning undergraduate students in mathematics, it presents the concepts underpinning frequentist statistical theory. Written in a conversational and informal style, this concise text concentrates on ideas and concepts, with key theorems stated and proved. Detailed worked examples are included and each chapter ends with a set of exercises, with full solutions given at the back of the book. Examples using R are provided throughout the book, with a brief guide to the software included. Topics covered in the book include: sampling distributions, properties of estimators, confidence intervals, hypothesis testing, ANOVA, and fitting a straight line to paired data. Based on the author's extensive teaching experience, the material of the book has been honed by student feedback for over a decade. Assuming only some familiarity with elementary probability, this textbook has been devised for a one semester first course in statistics.
Book Synopsis Statistical Inference by : George Casella
Download or read book Statistical Inference written by George Casella and published by CRC Press. This book was released on 2024-05-23 with total page 1746 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic textbook builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and natural extensions, and consequences, of previous concepts. It covers all topics from a standard inference course including: distributions, random variables, data reduction, point estimation, hypothesis testing, and interval estimation. Features The classic graduate-level textbook on statistical inference Develops elements of statistical theory from first principles of probability Written in a lucid style accessible to anyone with some background in calculus Covers all key topics of a standard course in inference Hundreds of examples throughout to aid understanding Each chapter includes an extensive set of graduated exercises Statistical Inference, Second Edition is primarily aimed at graduate students of statistics, but can be used by advanced undergraduate students majoring in statistics who have a solid mathematics background. It also stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures, while less focused on formal optimality considerations. This is a reprint of the second edition originally published by Cengage Learning, Inc. in 2001.
Book Synopsis A First Course in Order Statistics by : Barry C. Arnold
Download or read book A First Course in Order Statistics written by Barry C. Arnold and published by SIAM. This book was released on 2008-09-25 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This updated classic text will aid readers in understanding much of the current literature on order statistics: a flourishing field of study that is essential for any practising statistician and a vital part of the training for students in statistics. Written in a simple style that requires no advanced mathematical or statistical background, the book introduces the general theory of order statistics and their applications. The book covers topics such as distribution theory for order statistics from continuous and discrete populations, moment relations, bounds and approximations, order statistics in statistical inference and characterisation results, and basic asymptotic theory. There is also a short introduction to record values and related statistics. The authors have updated the text with suggestions for further reading that may be used for self-study. Written for advanced undergraduate and graduate students in statistics and mathematics, practising statisticians, engineers, climatologists, economists, and biologists.
Book Synopsis Statistical Inference by : Robert B. Ash
Download or read book Statistical Inference written by Robert B. Ash and published by Courier Corporation. This book was released on 2011-01-01 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a brief course in statistical inference that requires only a basic familiarity with probability and matrix and linear algebra. Ninety problems with solutions make it an ideal choice for self-study as well as a helpful review of a wide-ranging topic with important uses to professionals in business, government, public administration, and other fields. 2011 edition.
Book Synopsis All of Statistics by : Larry Wasserman
Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Book Synopsis Statistics for Mathematicians by : Victor M. Panaretos
Download or read book Statistics for Mathematicians written by Victor M. Panaretos and published by Birkhäuser. This book was released on 2016-06-01 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a coherent introduction to the main concepts and methods of one-parameter statistical inference. Intended for students of Mathematics taking their first course in Statistics, the focus is on Statistics for Mathematicians rather than on Mathematical Statistics. The goal is not to focus on the mathematical/theoretical aspects of the subject, but rather to provide an introduction to the subject tailored to the mindset and tastes of Mathematics students, who are sometimes turned off by the informal nature of Statistics courses. This book can be used as the basis for an elementary semester-long first course on Statistics with a firm sense of direction that does not sacrifice rigor. The deeper goal of the text is to attract the attention of promising Mathematics students.
Book Synopsis A First Course in Bayesian Statistical Methods by : Peter D. Hoff
Download or read book A First Course in Bayesian Statistical Methods written by Peter D. Hoff and published by Springer Science & Business Media. This book was released on 2009-06-02 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.
Book Synopsis Introduction to Statistical Inference by : Jack C. Kiefer
Download or read book Introduction to Statistical Inference written by Jack C. Kiefer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based upon lecture notes developed by Jack Kiefer for a course in statistical inference he taught at Cornell University. The notes were distributed to the class in lieu of a textbook, and the problems were used for homework assignments. Relying only on modest prerequisites of probability theory and cal culus, Kiefer's approach to a first course in statistics is to present the central ideas of the modem mathematical theory with a minimum of fuss and formality. He is able to do this by using a rich mixture of examples, pictures, and math ematical derivations to complement a clear and logical discussion of the important ideas in plain English. The straightforwardness of Kiefer's presentation is remarkable in view of the sophistication and depth of his examination of the major theme: How should an intelligent person formulate a statistical problem and choose a statistical procedure to apply to it? Kiefer's view, in the same spirit as Neyman and Wald, is that one should try to assess the consequences of a statistical choice in some quan titative (frequentist) formulation and ought to choose a course of action that is verifiably optimal (or nearly so) without regard to the perceived "attractiveness" of certain dogmas and methods.
Book Synopsis Introductory Statistical Inference by : Nitis Mukhopadhyay
Download or read book Introductory Statistical Inference written by Nitis Mukhopadhyay and published by CRC Press. This book was released on 2006-02-07 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory Statistical Inference develops the concepts and intricacies of statistical inference. With a review of probability concepts, this book discusses topics such as sufficiency, ancillarity, point estimation, minimum variance estimation, confidence intervals, multiple comparisons, and large-sample inference. It introduces techniques of two-stage sampling, fitting a straight line to data, tests of hypotheses, nonparametric methods, and the bootstrap method. It also features worked examples of statistical principles as well as exercises with hints. This text is suited for courses in probability and statistical inference at the upper-level undergraduate and graduate levels.
Book Synopsis A First Course on Parametric Inference by : Balvant Keshav Kale
Download or read book A First Course on Parametric Inference written by Balvant Keshav Kale and published by Alpha Science Int'l Ltd.. This book was released on 2005 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: "After a brief historical perspective, A First Course on Parametric Inference, discusses the basic concept of sufficient statistic and the classical approach based on minimum variance unbiased estimator. There is a separate chapter on simultaneous estimation of several parameters. Large sample theory of estimation, based on consistent asymptotically normal estimators obtained by method of moments, percentile and the method of maximum likelihood is also introduced. The tests of hypotheses for finite samples with classical Neyman-Pearson theory is developed pointing out its connection with Bayesian approach. The hypotheses testing and confidence interval techniques are developed leading to likelihood ratio tests, score tests and tests based on maximum likelihood estimators."--BOOK JACKET.
Book Synopsis Statistical Inference by : Michael J. Panik
Download or read book Statistical Inference written by Michael J. Panik and published by John Wiley & Sons. This book was released on 2012-06-06 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise, easily accessible introduction to descriptive and inferential techniques Statistical Inference: A Short Course offers a concise presentation of the essentials of basic statistics for readers seeking to acquire a working knowledge of statistical concepts, measures, and procedures. The author conducts tests on the assumption of randomness and normality, provides nonparametric methods when parametric approaches might not work. The book also explores how to determine a confidence interval for a population median while also providing coverage of ratio estimation, randomness, and causality. To ensure a thorough understanding of all key concepts, Statistical Inference provides numerous examples and solutions along with complete and precise answers to many fundamental questions, including: How do we determine that a given dataset is actually a random sample? With what level of precision and reliability can a population sample be estimated? How are probabilities determined and are they the same thing as odds? How can we predict the level of one variable from that of another? What is the strength of the relationship between two variables? The book is organized to present fundamental statistical concepts first, with later chapters exploring more advanced topics and additional statistical tests such as Distributional Hypotheses, Multinomial Chi-Square Statistics, and the Chi-Square Distribution. Each chapter includes appendices and exercises, allowing readers to test their comprehension of the presented material. Statistical Inference: A Short Course is an excellent book for courses on probability, mathematical statistics, and statistical inference at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for researchers and practitioners who would like to develop further insights into essential statistical tools.
Book Synopsis Statistical Inference by : Helio S. Migon
Download or read book Statistical Inference written by Helio S. Migon and published by CRC Press. This book was released on 2014-09-03 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Balanced Treatment of Bayesian and Frequentist Inference Statistical Inference: An Integrated Approach, Second Edition presents an account of the Bayesian and frequentist approaches to statistical inference. Now with an additional author, this second edition places a more balanced emphasis on both perspectives than the first edition. New to the Second Edition New material on empirical Bayes and penalized likelihoods and their impact on regression models Expanded material on hypothesis testing, method of moments, bias correction, and hierarchical models More examples and exercises More comparison between the approaches, including their similarities and differences Designed for advanced undergraduate and graduate courses, the text thoroughly covers statistical inference without delving too deep into technical details. It compares the Bayesian and frequentist schools of thought and explores procedures that lie on the border between the two. Many examples illustrate the methods and models, and exercises are included at the end of each chapter.
Book Synopsis Introduction to the Theory of Statistical Inference by : Hannelore Liero
Download or read book Introduction to the Theory of Statistical Inference written by Hannelore Liero and published by CRC Press. This book was released on 2016-04-19 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the authors' lecture notes, this text presents concise yet complete coverage of statistical inference theory, focusing on the fundamental classical principles. Unlike related textbooks, it combines the theoretical basis of statistical inference with a useful applied toolbox that includes linear models. Suitable for a second semester undergraduate course on statistical inference, the text offers proofs to support the mathematics and does not require any use of measure theory. It illustrates core concepts using cartoons and provides solutions to all examples and problems.
Book Synopsis A First Course in Statistical Inference by : Jonathan Gillard
Download or read book A First Course in Statistical Inference written by Jonathan Gillard and published by Springer Nature. This book was released on 2020-04-20 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a modern and accessible introduction to Statistical Inference, the science of inferring key information from data. Aimed at beginning undergraduate students in mathematics, it presents the concepts underpinning frequentist statistical theory. Written in a conversational and informal style, this concise text concentrates on ideas and concepts, with key theorems stated and proved. Detailed worked examples are included and each chapter ends with a set of exercises, with full solutions given at the back of the book. Examples using R are provided throughout the book, with a brief guide to the software included. Topics covered in the book include: sampling distributions, properties of estimators, confidence intervals, hypothesis testing, ANOVA, and fitting a straight line to paired data. Based on the author’s extensive teaching experience, the material of the book has been honed by student feedback for over a decade. Assuming only some familiarity with elementary probability, this textbook has been devised for a one semester first course in statistics.
Book Synopsis An Introduction to Statistical Inference and Its Applications with R by : Michael W. Trosset
Download or read book An Introduction to Statistical Inference and Its Applications with R written by Michael W. Trosset and published by CRC Press. This book was released on 2009-06-23 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing concepts rather than recipes, An Introduction to Statistical Inference and Its Applications with R provides a clear exposition of the methods of statistical inference for students who are comfortable with mathematical notation. Numerous examples, case studies, and exercises are included. R is used to simplify computation, create figures
Book Synopsis A First Course in Multivariate Statistics by : Bernard Flury
Download or read book A First Course in Multivariate Statistics written by Bernard Flury and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to the field, carefully balancing mathematical theory and practical applications. It starts at an elementary level, developing concepts of multivariate distributions from first principles. After a chapter on the multivariate normal distribution reviewing the classical parametric theory, methods of estimation are explored using the plug-in principles as well as maximum likelihood. Two chapters on discrimination and classification, including logistic regression, form the core of the book, followed by methods of testing hypotheses developed from heuristic principles, likelihood ratio tests and permutation tests. Finally, the powerful self-consistency principle is used to introduce principal components as a method of approximation, rounded off by a chapter on finite mixture analysis.
Book Synopsis Probability and Statistical Inference by : Miltiadis C. Mavrakakis
Download or read book Probability and Statistical Inference written by Miltiadis C. Mavrakakis and published by CRC Press. This book was released on 2021-03-28 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Statistical Inference: From Basic Principles to Advanced Models covers aspects of probability, distribution theory, and inference that are fundamental to a proper understanding of data analysis and statistical modelling. It presents these topics in an accessible manner without sacrificing mathematical rigour, bridging the gap between the many excellent introductory books and the more advanced, graduate-level texts. The book introduces and explores techniques that are relevant to modern practitioners, while being respectful to the history of statistical inference. It seeks to provide a thorough grounding in both the theory and application of statistics, with even the more abstract parts placed in the context of a practical setting. Features: •Complete introduction to mathematical probability, random variables, and distribution theory. •Concise but broad account of statistical modelling, covering topics such as generalised linear models, survival analysis, time series, and random processes. •Extensive discussion of the key concepts in classical statistics (point estimation, interval estimation, hypothesis testing) and the main techniques in likelihood-based inference. •Detailed introduction to Bayesian statistics and associated topics. •Practical illustration of some of the main computational methods used in modern statistical inference (simulation, boostrap, MCMC). This book is for students who have already completed a first course in probability and statistics, and now wish to deepen and broaden their understanding of the subject. It can serve as a foundation for advanced undergraduate or postgraduate courses. Our aim is to challenge and excite the more mathematically able students, while providing explanations of statistical concepts that are more detailed and approachable than those in advanced texts. This book is also useful for data scientists, researchers, and other applied practitioners who want to understand the theory behind the statistical methods used in their fields.