Feature Extraction

Download Feature Extraction PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540354883
Total Pages : 765 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Feature Extraction by : Isabelle Guyon

Download or read book Feature Extraction written by Isabelle Guyon and published by Springer. This book was released on 2008-11-16 with total page 765 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is both a reference for engineers and scientists and a teaching resource, featuring tutorial chapters and research papers on feature extraction. Until now there has been insufficient consideration of feature selection algorithms, no unified presentation of leading methods, and no systematic comparisons.

Feature Extraction and Image Processing for Computer Vision

Download Feature Extraction and Image Processing for Computer Vision PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0123978246
Total Pages : 629 pages
Book Rating : 4.1/5 (239 download)

DOWNLOAD NOW!


Book Synopsis Feature Extraction and Image Processing for Computer Vision by : Mark Nixon

Download or read book Feature Extraction and Image Processing for Computer Vision written by Mark Nixon and published by Academic Press. This book was released on 2012-12-18 with total page 629 pages. Available in PDF, EPUB and Kindle. Book excerpt: Feature Extraction and Image Processing for Computer Vision is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in Matlab. Algorithms are presented and fully explained to enable complete understanding of the methods and techniques demonstrated. As one reviewer noted, "The main strength of the proposed book is the exemplar code of the algorithms." Fully updated with the latest developments in feature extraction, including expanded tutorials and new techniques, this new edition contains extensive new material on Haar wavelets, Viola-Jones, bilateral filtering, SURF, PCA-SIFT, moving object detection and tracking, development of symmetry operators, LBP texture analysis, Adaboost, and a new appendix on color models. Coverage of distance measures, feature detectors, wavelets, level sets and texture tutorials has been extended. - Named a 2012 Notable Computer Book for Computing Methodologies by Computing Reviews - Essential reading for engineers and students working in this cutting-edge field - Ideal module text and background reference for courses in image processing and computer vision - The only currently available text to concentrate on feature extraction with working implementation and worked through derivation

Feature Extraction, Construction and Selection

Download Feature Extraction, Construction and Selection PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461557259
Total Pages : 418 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Feature Extraction, Construction and Selection by : Huan Liu

Download or read book Feature Extraction, Construction and Selection written by Huan Liu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is broad interest in feature extraction, construction, and selection among practitioners from statistics, pattern recognition, and data mining to machine learning. Data preprocessing is an essential step in the knowledge discovery process for real-world applications. This book compiles contributions from many leading and active researchers in this growing field and paints a picture of the state-of-art techniques that can boost the capabilities of many existing data mining tools. The objective of this collection is to increase the awareness of the data mining community about the research of feature extraction, construction and selection, which are currently conducted mainly in isolation. This book is part of our endeavor to produce a contemporary overview of modern solutions, to create synergy among these seemingly different branches, and to pave the way for developing meta-systems and novel approaches. Even with today's advanced computer technologies, discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Feature extraction, construction and selection are a set of techniques that transform and simplify data so as to make data mining tasks easier. Feature construction and selection can be viewed as two sides of the representation problem.

Unsupervised Feature Extraction Applied to Bioinformatics

Download Unsupervised Feature Extraction Applied to Bioinformatics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030224562
Total Pages : 329 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Unsupervised Feature Extraction Applied to Bioinformatics by : Y-h. Taguchi

Download or read book Unsupervised Feature Extraction Applied to Bioinformatics written by Y-h. Taguchi and published by Springer Nature. This book was released on 2019-08-23 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. Allows readers to analyze data sets with small samples and many features; Provides a fast algorithm, based upon linear algebra, to analyze big data; Includes several applications to multi-view data analyses, with a focus on bioinformatics.

EEG Signal Processing and Feature Extraction

Download EEG Signal Processing and Feature Extraction PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811391130
Total Pages : 435 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis EEG Signal Processing and Feature Extraction by : Li Hu

Download or read book EEG Signal Processing and Feature Extraction written by Li Hu and published by Springer Nature. This book was released on 2019-10-12 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the conceptual and mathematical basis and the implementation of both electroencephalogram (EEG) and EEG signal processing in a comprehensive, simple, and easy-to-understand manner. EEG records the electrical activity generated by the firing of neurons within human brain at the scalp. They are widely used in clinical neuroscience, psychology, and neural engineering, and a series of EEG signal-processing techniques have been developed. Intended for cognitive neuroscientists, psychologists and other interested readers, the book discusses a range of current mainstream EEG signal-processing and feature-extraction techniques in depth, and includes chapters on the principles and implementation strategies.

Texture Feature Extraction Techniques for Image Recognition

Download Texture Feature Extraction Techniques for Image Recognition PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811508534
Total Pages : 109 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Texture Feature Extraction Techniques for Image Recognition by : Jyotismita Chaki

Download or read book Texture Feature Extraction Techniques for Image Recognition written by Jyotismita Chaki and published by Springer Nature. This book was released on 2019-10-24 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book describes various texture feature extraction approaches and texture analysis applications. It introduces and discusses the importance of texture features, and describes various types of texture features like statistical, structural, signal-processed and model-based. It also covers applications related to texture features, such as facial imaging. It is a valuable resource for machine vision researchers and practitioners in different application areas.

Feature Extraction and Image Processing

Download Feature Extraction and Image Processing PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080506259
Total Pages : 364 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Feature Extraction and Image Processing by : Mark Nixon

Download or read book Feature Extraction and Image Processing written by Mark Nixon and published by Elsevier. This book was released on 2013-10-22 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on feature extraction while also covering issues and techniques such as image acquisition, sampling theory, point operations and low-level feature extraction, the authors have a clear and coherent approach that will appeal to a wide range of students and professionals. - Ideal module text for courses in artificial intelligence, image processing and computer vision - Essential reading for engineers and academics working in this cutting-edge field - Supported by free software on a companion website

A Beginner’s Guide to Image Shape Feature Extraction Techniques

Download A Beginner’s Guide to Image Shape Feature Extraction Techniques PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000034305
Total Pages : 147 pages
Book Rating : 4.0/5 ( download)

DOWNLOAD NOW!


Book Synopsis A Beginner’s Guide to Image Shape Feature Extraction Techniques by : Jyotismita Chaki

Download or read book A Beginner’s Guide to Image Shape Feature Extraction Techniques written by Jyotismita Chaki and published by CRC Press. This book was released on 2019-07-25 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes various image shape feature extraction methods which are necessary for image shape recognition and classification. Focussing on a shape feature extraction technique used in content-based image retrieval (CBIR), it explains different applications of image shape features in the field of content-based image retrieval. Showcasing useful applications and illustrating examples in many interdisciplinary fields, the present book is aimed at researchers and graduate students in electrical engineering, data science, computer science, medicine, and machine learning including medical physics and information technology.

Feature Extraction & Image Processing

Download Feature Extraction & Image Processing PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080556728
Total Pages : 423 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Feature Extraction & Image Processing by : Mark Nixon

Download or read book Feature Extraction & Image Processing written by Mark Nixon and published by Elsevier. This book was released on 2008-01-08 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whilst other books cover a broad range of topics, Feature Extraction and Image Processing takes one of the prime targets of applied computer vision, feature extraction, and uses it to provide an essential guide to the implementation of image processing and computer vision techniques. Acting as both a source of reference and a student text, the book explains techniques and fundamentals in a clear and concise manner and helps readers to develop working techniques, with usable code provided throughout. The new edition is updated throughout in line with developments in the field, and is revised to focus on mathematical programming in Matlab. - Essential reading for engineers and students working in this cutting edge field - Ideal module text and background reference for courses in image processing and computer vision

Feature Engineering for Machine Learning

Download Feature Engineering for Machine Learning PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491953195
Total Pages : 218 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Feature Engineering for Machine Learning by : Alice Zheng

Download or read book Feature Engineering for Machine Learning written by Alice Zheng and published by "O'Reilly Media, Inc.". This book was released on 2018-03-23 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering. Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples. You’ll examine: Feature engineering for numeric data: filtering, binning, scaling, log transforms, and power transforms Natural text techniques: bag-of-words, n-grams, and phrase detection Frequency-based filtering and feature scaling for eliminating uninformative features Encoding techniques of categorical variables, including feature hashing and bin-counting Model-based feature engineering with principal component analysis The concept of model stacking, using k-means as a featurization technique Image feature extraction with manual and deep-learning techniques

Handbook of Research on Emerging Perspectives in Intelligent Pattern Recognition, Analysis, and Image Processing

Download Handbook of Research on Emerging Perspectives in Intelligent Pattern Recognition, Analysis, and Image Processing PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1466686553
Total Pages : 506 pages
Book Rating : 4.4/5 (666 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Research on Emerging Perspectives in Intelligent Pattern Recognition, Analysis, and Image Processing by : Kamila, Narendra Kumar

Download or read book Handbook of Research on Emerging Perspectives in Intelligent Pattern Recognition, Analysis, and Image Processing written by Kamila, Narendra Kumar and published by IGI Global. This book was released on 2015-11-30 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: ###############################################################################################################################################################################################################################################################

Building Feature Extraction with Machine Learning

Download Building Feature Extraction with Machine Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000817199
Total Pages : 145 pages
Book Rating : 4.0/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Building Feature Extraction with Machine Learning by : Bharath.H. Aithal

Download or read book Building Feature Extraction with Machine Learning written by Bharath.H. Aithal and published by CRC Press. This book was released on 2022-12-29 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big geospatial datasets created by large infrastructure projects require massive computing resources to process. Feature extraction is a process used to reduce the initial set of raw data for manageable image processing, and machine learning (ML) is the science that supports it. This book focuses on feature extraction methods for optical geospatial data using ML. It is a practical guide for professionals and graduate students who are starting a career in information extraction. It explains spatial feature extraction in an easy-to-understand way and includes real case studies on how to collect height values for spatial features, how to develop 3D models in a map context, and others. Features Provides the basics of feature extraction methods and applications along with the fundamentals of machine learning Discusses in detail the application of machine learning techniques in geospatial building feature extraction Explains the methods for estimating object height from optical satellite remote sensing images using Python Includes case studies that demonstrate the use of machine learning models for building footprint extraction and photogrammetric methods for height assessment Highlights the potential of machine learning and geospatial technology for future project developments This book will be of interest to professionals, researchers, and graduate students in geoscience and earth observation, machine learning and data science, civil engineers, and urban planners.

Supervised and Unsupervised Pattern Recognition

Download Supervised and Unsupervised Pattern Recognition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351835556
Total Pages : 475 pages
Book Rating : 4.3/5 (518 download)

DOWNLOAD NOW!


Book Synopsis Supervised and Unsupervised Pattern Recognition by : Evangelia Miche Tzanakou

Download or read book Supervised and Unsupervised Pattern Recognition written by Evangelia Miche Tzanakou and published by CRC Press. This book was released on 2017-12-19 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many books on neural networks, some of which cover computational intelligence, but none that incorporate both feature extraction and computational intelligence, as Supervised and Unsupervised Pattern Recognition does. This volume describes the application of a novel, unsupervised pattern recognition scheme to the classification of various types of waveforms and images. This substantial collection of recent research begins with an introduction to Neural Networks, classifiers, and feature extraction methods. It then addresses unsupervised and fuzzy neural networks and their applications to handwritten character recognition and recognition of normal and abnormal visual evoked potentials. The third section deals with advanced neural network architectures-including modular design-and their applications to medicine and three-dimensional NN architecture simulating brain functions. The final section discusses general applications and simulations, such as the establishment of a brain-computer link, speaker identification, and face recognition. In the quickly changing field of computational intelligence, every discovery is significant. Supervised and Unsupervised Pattern Recognition gives you access to many notable findings in one convenient volume.

Image Color Feature Extraction Techniques

Download Image Color Feature Extraction Techniques PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811557616
Total Pages : 93 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Image Color Feature Extraction Techniques by : Jyotismita Chaki

Download or read book Image Color Feature Extraction Techniques written by Jyotismita Chaki and published by Springer Nature. This book was released on 2020-06-03 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a range of image color feature extraction techniques. Readers are encouraged to try implementing the techniques discussed here on their own, all of which are presented in a very simple and step-by-step manner. In addition, the book can be used as an introduction to image color feature techniques for those who are new to the research field and software. The techniques are very easy to understand as most of them are described with pictorial examples. Not only the techniques themselves, but also their applications are covered. Accordingly, the book offers a valuable guide to these tools, which are a vital component of content-based image retrieval (CBIR).

Prominent Feature Extraction for Sentiment Analysis

Download Prominent Feature Extraction for Sentiment Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319253433
Total Pages : 118 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Prominent Feature Extraction for Sentiment Analysis by : Basant Agarwal

Download or read book Prominent Feature Extraction for Sentiment Analysis written by Basant Agarwal and published by Springer. This book was released on 2015-12-14 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from the text. Proposed approach combines the semantic and common-sense knowledge for the better understanding of the text. In addition, the book aims to extract prominent features from the unstructured text by eliminating the noisy, irrelevant and redundant features. Readers will also discover a proposed method for efficient dimensionality reduction to alleviate the data sparseness problem being faced by machine learning model. Authors pay attention to the four main findings of the book : -Performance of the sentiment analysis can be improved by reducing the redundancy among the features. Experimental results show that minimum Redundancy Maximum Relevance (mRMR) feature selection technique improves the performance of the sentiment analysis by eliminating the redundant features. - Boolean Multinomial Naive Bayes (BMNB) machine learning algorithm with mRMR feature selection technique performs better than Support Vector Machine (SVM) classifier for sentiment analysis. - The problem of data sparseness is alleviated by semantic clustering of features, which in turn improves the performance of the sentiment analysis. - Semantic relations among the words in the text have useful cues for sentiment analysis. Common-sense knowledge in form of ConceptNet ontology acquires knowledge, which provides a better understanding of the text that improves the performance of the sentiment analysis.

Hands-On Transfer Learning with Python

Download Hands-On Transfer Learning with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788839056
Total Pages : 430 pages
Book Rating : 4.7/5 (888 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Transfer Learning with Python by : Dipanjan Sarkar

Download or read book Hands-On Transfer Learning with Python written by Dipanjan Sarkar and published by Packt Publishing Ltd. This book was released on 2018-08-31 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP Who this book is for Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.

Real-time Speech and Music Classification by Large Audio Feature Space Extraction

Download Real-time Speech and Music Classification by Large Audio Feature Space Extraction PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319272993
Total Pages : 328 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Real-time Speech and Music Classification by Large Audio Feature Space Extraction by : Florian Eyben

Download or read book Real-time Speech and Music Classification by Large Audio Feature Space Extraction written by Florian Eyben and published by Springer. This book was released on 2015-12-24 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on an outstanding thesis that has significantly advanced the state-of-the-art in the automated analysis and classification of speech and music. It defines several standard acoustic parameter sets and describes their implementation in a novel, open-source, audio analysis framework called openSMILE, which has been accepted and intensively used worldwide. The book offers extensive descriptions of key methods for the automatic classification of speech and music signals in real-life conditions and reports on the evaluation of the framework developed and the acoustic parameter sets that were selected. It is not only intended as a manual for openSMILE users, but also and primarily as a guide and source of inspiration for students and scientists involved in the design of speech and music analysis methods that can robustly handle real-life conditions.