Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Fast And Robust Estimation Of The Multivariate Errors In Variables Model
Download Fast And Robust Estimation Of The Multivariate Errors In Variables Model full books in PDF, epub, and Kindle. Read online Fast And Robust Estimation Of The Multivariate Errors In Variables Model ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Information Computing and Applications by : Baoxiang Liu
Download or read book Information Computing and Applications written by Baoxiang Liu and published by Springer Science & Business Media. This book was released on 2011-12-02 with total page 793 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Conference on Information Computing and Applications, ICICA 2010, held in Qinhuangdao, China, in October 2011. The 97 papers presented were carefully reviewed and selected from numerous submissions. They are organized in topical sections on computational economics and finance, computational statistics, mobile computing and applications, social networking and computing, intelligent computing and applications, internet and Web computing, paralelle and distributed computing, and system simulation and computing.
Book Synopsis Applied Econometrics by : Chia-Lin Chang
Download or read book Applied Econometrics written by Chia-Lin Chang and published by MDPI. This book was released on 2019-05-13 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the theme of the monograph is primarily related to “Applied Econometrics”, there are several theoretical contributions that are associated with empirical examples, or directions in which the novel theoretical ideas might be applied. The monograph is associated with significant and novel contributions in theoretical and applied econometrics; economics; theoretical and applied financial econometrics; quantitative finance; risk; financial modeling; portfolio management; optimal hedging strategies; theoretical and applied statistics; applied time series analysis; forecasting; applied mathematics; energy economics; energy finance; tourism research; tourism finance; agricultural economics; informatics; data mining; bibliometrics; and international rankings of journals and academics.
Book Synopsis Comprehensive Chemometrics by : Steven Brown
Download or read book Comprehensive Chemometrics written by Steven Brown and published by Elsevier. This book was released on 2020-05-26 with total page 2948 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Chemometrics, Second Edition, Four Volume Set features expanded and updated coverage, along with new content that covers advances in the field since the previous edition published in 2009. Subject of note include updates in the fields of multidimensional and megavariate data analysis, omics data analysis, big chemical and biochemical data analysis, data fusion and sparse methods. The book follows a similar structure to the previous edition, using the same section titles to frame articles. Many chapters from the previous edition are updated, but there are also many new chapters on the latest developments. Presents integrated reviews of each chemical and biological method, examining their merits and limitations through practical examples and extensive visuals Bridges a gap in knowledge, covering developments in the field since the first edition published in 2009 Meticulously organized, with articles split into 4 sections and 12 sub-sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Written by academics and practitioners from various fields and regions to ensure that the knowledge within is easily understood and applicable to a large audience Presents integrated reviews of each chemical and biological method, examining their merits and limitations through practical examples and extensive visuals Bridges a gap in knowledge, covering developments in the field since the first edition published in 2009 Meticulously organized, with articles split into 4 sections and 12 sub-sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Written by academics and practitioners from various fields and regions to ensure that the knowledge within is easily understood and applicable to a large audience
Book Synopsis Theory and Applications of Recent Robust Methods by : Mia Hubert
Download or read book Theory and Applications of Recent Robust Methods written by Mia Hubert and published by Birkhäuser. This book was released on 2012-12-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for both researchers and practitioners, this book will be a valuable resource for studying and applying recent robust statistical methods. It contains up-to-date research results in the theory of robust statistics Treats computational aspects and algorithms and shows interesting and new applications.
Book Synopsis Total Least Squares and Errors-in-Variables Modeling by : S. van Huffel
Download or read book Total Least Squares and Errors-in-Variables Modeling written by S. van Huffel and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: In response to a growing interest in Total Least Squares (TLS) and Errors-In-Variables (EIV) modeling by researchers and practitioners, well-known experts from several disciplines were invited to prepare an overview paper and present it at the third international workshop on TLS and EIV modeling held in Leuven, Belgium, August 27-29, 2001. These invited papers, representing two-thirds of the book, together with a selection of other presented contributions yield a complete overview of the main scientific achievements since 1996 in TLS and Errors-In-Variables modeling. In this way, the book nicely completes two earlier books on TLS (SIAM 1991 and 1997). Not only computational issues, but also statistical, numerical, algebraic properties are described, as well as many new generalizations and applications. Being aware of the growing interest in these techniques, it is a strong belief that this book will aid and stimulate users to apply the new techniques and models correctly to their own practical problems.
Book Synopsis Seemingly Unrelated Regression Equations Models by : Virendera K. Srivastava
Download or read book Seemingly Unrelated Regression Equations Models written by Virendera K. Srivastava and published by CRC Press. This book was released on 2020-08-13 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together the scattered literature associated with the seemingly unrelated regression equations (SURE) model used by econometricians and others. It focuses on the theoretical statistical results associated with the SURE model.
Book Synopsis An Introduction to Applied Multivariate Analysis with R by : Brian Everitt
Download or read book An Introduction to Applied Multivariate Analysis with R written by Brian Everitt and published by Springer Science & Business Media. This book was released on 2011-04-23 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Book Synopsis Algorithms, Routines, and S-Functions for Robust Statistics by : Alfio Marazzi
Download or read book Algorithms, Routines, and S-Functions for Robust Statistics written by Alfio Marazzi and published by CRC Press. This book was released on 1993-02-01 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: ROBETH (written in ANSI FORTRAN 77) is a systematized collection of algorithms that allows computation of a broad class of procedures based on M- and high-breakdown point estimation, including robust regression, robust testing of linear hypotheses, and robust coveriances. This book describes the computational procedures included in ROBETH. Each chapter is organized into three parts: 1. An overview of the theoretical background for the statistical and numerical methods 2. A detailed description of the corresponding FORTRAN subroutines and of the numerical algorithms as they are implemented 3. The scripts of several examples concerning the use of ROBETH by means of the S-PLUS interface, including some examples of high-level S functions.
Book Synopsis COMPSTAT 2006 - Proceedings in Computational Statistics by : Alfredo Rizzi
Download or read book COMPSTAT 2006 - Proceedings in Computational Statistics written by Alfredo Rizzi and published by Springer Science & Business Media. This book was released on 2007-12-03 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: International Association for Statistical Computing The International Association for Statistical Computing (IASC) is a Section of the International Statistical Institute. The objectives of the Association are to foster world-wide interest in e?ective statistical computing and to - change technical knowledge through international contacts and meetings - tween statisticians, computing professionals, organizations, institutions, g- ernments and the general public. The IASC organises its own Conferences, IASC World Conferences, and COMPSTAT in Europe. The 17th Conference of ERS-IASC, the biennial meeting of European - gional Section of the IASC was held in Rome August 28 - September 1, 2006. This conference took place in Rome exactly 20 years after the 7th COMP- STAT symposium which was held in Rome, in 1986. Previous COMPSTAT conferences were held in: Vienna (Austria, 1974); West-Berlin (Germany, 1976); Leiden (The Netherlands, 1978); Edimbourgh (UK, 1980); Toulouse (France, 1982); Prague (Czechoslovakia, 1984); Rome (Italy, 1986); Copenhagen (Denmark, 1988); Dubrovnik (Yugoslavia, 1990); Neuchˆ atel (Switzerland, 1992); Vienna (Austria,1994); Barcelona (Spain, 1996);Bristol(UK,1998);Utrecht(TheNetherlands,2000);Berlin(Germany, 2002); Prague (Czech Republic, 2004).
Download or read book Technometrics written by and published by . This book was released on 2005 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Robust Statistics by : Ricardo A. Maronna
Download or read book Robust Statistics written by Ricardo A. Maronna and published by John Wiley & Sons. This book was released on 2019-01-04 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.
Book Synopsis Measurement Error and Latent Variables in Econometrics by : T. Wansbeek
Download or read book Measurement Error and Latent Variables in Econometrics written by T. Wansbeek and published by North Holland. This book was released on 2000-12-08 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book first discusses in depth various aspects of the well-known inconsistency that arises when explanatory variables in a linear regression model are measured with error. Despite this inconsistency, the region where the true regression coeffecients lies can sometimes be characterized in a useful way, especially when bounds are known on the measurement error variance but also when such information is absent. Wage discrimination with imperfect productivity measurement is discussed as an important special case. Next, it is shown that the inconsistency is not accidental but fundamental. Due to an identification problem, no consistent estimators may exist at all. Additional information is desirable. This information can be of various types. One type is exact prior knowledge about functions of the parameters. This leads to the CALS estimator. Another major type is in the form of instrumental variables. Many aspects of this are discussed, including heteroskedasticity, combination of data from different sources, construction of instruments from the available data, and the LIML estimator, which is especially relevant when the instruments are weak. The scope is then widened to an embedding of the regression equation with measurement error in a multiple equations setting, leading to the exploratory factor analysis (EFA) model. This marks the step from measurement error to latent variables. Estimation of the EFA model leads to an eigenvalue problem. A variety of models is reviewed that involve eignevalue problems as their common characteristic. EFA is extended to confirmatory factor analysis (CFA) by including restrictions on the parameters of the factor analysis model, and next by relating the factors to background variables. These models are all structural equation models (SEMs), a very general and important class of models, with the LISREL model as its best-known representation, encompassing almost all linear equation systems with latent variables. Estimation of SEMs can be viewed as an application of the generalized method of moments (GMM). GMM in general and for SEM in particular is discussed at great length, including the generality of GMM, optimal weighting, conditional moments, continuous updating, simulation estimation, the link with the method of maximum likelihood, and in particular testing and model evaluation for GMM. The discussion concludes with nonlinear models. The emphasis is on polynomial models and models that are nonlinear due to a filter on the dependent variables, like discrete choice models or models with ordered categorical variables.
Book Synopsis Introduction to Robust Estimation and Hypothesis Testing by : Rand R. Wilcox
Download or read book Introduction to Robust Estimation and Hypothesis Testing written by Rand R. Wilcox and published by Academic Press. This book was released on 2012-01-12 with total page 713 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--
Book Synopsis Mixed Effects Models for Complex Data by : Lang Wu
Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Book Synopsis Introduction to Robust Estimation and Hypothesis Testing by : Rand R. Wilcox
Download or read book Introduction to Robust Estimation and Hypothesis Testing written by Rand R. Wilcox and published by Academic Press. This book was released on 2016-09-02 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Robust Estimating and Hypothesis Testing, 4th Editon, is a 'how-to' on the application of robust methods using available software. Modern robust methods provide improved techniques for dealing with outliers, skewed distribution curvature and heteroscedasticity that can provide substantial gains in power as well as a deeper, more accurate and more nuanced understanding of data. Since the last edition, there have been numerous advances and improvements. They include new techniques for comparing groups and measuring effect size as well as new methods for comparing quantiles. Many new regression methods have been added that include both parametric and nonparametric techniques. The methods related to ANCOVA have been expanded considerably. New perspectives related to discrete distributions with a relatively small sample space are described as well as new results relevant to the shift function. The practical importance of these methods is illustrated using data from real world studies. The R package written for this book now contains over 1200 functions. New to this edition - 35% revised content - Covers many new and improved R functions - New techniques that deal with a wide range of situations - Extensive revisions to cover the latest developments in robust regression - Covers latest improvements in ANOVA - Includes newest rank-based methods - Describes and illustrated easy to use software
Book Synopsis Recent Advances in Total Least Squares Techniques and Errors-in-variables Modeling by : Sabine van Huffel
Download or read book Recent Advances in Total Least Squares Techniques and Errors-in-variables Modeling written by Sabine van Huffel and published by SIAM. This book was released on 1997-01-01 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the computational issues; statistical, numerical, and algebraic properties, and new generalizations and applications of advances on TLS and EIV models. Experts from several disciplines prepared overview papers which were presented at the conference and are included in this book.
Book Synopsis Doing Meta-Analysis with R by : Mathias Harrer
Download or read book Doing Meta-Analysis with R written by Mathias Harrer and published by CRC Press. This book was released on 2021-09-15 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book