Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Extremal Problems In Graph Homomorphisms And Vertex Identifications
Download Extremal Problems In Graph Homomorphisms And Vertex Identifications full books in PDF, epub, and Kindle. Read online Extremal Problems In Graph Homomorphisms And Vertex Identifications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Extremal Problems in Graph Homomorphisms and Vertex Identifications by : Daniel Pritikin
Download or read book Extremal Problems in Graph Homomorphisms and Vertex Identifications written by Daniel Pritikin and published by . This book was released on 1984 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Dissertation Abstracts International by :
Download or read book Dissertation Abstracts International written by and published by . This book was released on 1985-03 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis American Doctoral Dissertations by :
Download or read book American Doctoral Dissertations written by and published by . This book was released on 1990 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Comprehensive Dissertation Index by :
Download or read book Comprehensive Dissertation Index written by and published by . This book was released on 1989 with total page 1016 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Notices of the American Mathematical Society by : American Mathematical Society
Download or read book Notices of the American Mathematical Society written by American Mathematical Society and published by . This book was released on 1985 with total page 1028 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains articles of significant interest to mathematicians, including reports on current mathematical research.
Download or read book Graph Symmetry written by Gena Hahn and published by Springer Science & Business Media. This book was released on 1997-06-30 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last decade has seen two parallel developments, one in computer science, the other in mathematics, both dealing with the same kind of combinatorial structures: networks with strong symmetry properties or, in graph-theoretical language, vertex-transitive graphs, in particular their prototypical examples, Cayley graphs. In the design of large interconnection networks it was realised that many of the most fre quently used models for such networks are Cayley graphs of various well-known groups. This has spawned a considerable amount of activity in the study of the combinatorial properties of such graphs. A number of symposia and congresses (such as the bi-annual IWIN, starting in 1991) bear witness to the interest of the computer science community in this subject. On the mathematical side, and independently of any interest in applications, progress in group theory has made it possible to make a realistic attempt at a complete description of vertex-transitive graphs. The classification of the finite simple groups has played an important role in this respect.
Book Synopsis Proof Techniques in Graph Theory by : Frank Harary
Download or read book Proof Techniques in Graph Theory written by Frank Harary and published by . This book was released on 1969 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematical Reviews written by and published by . This book was released on 1993 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Problems on Mapping Class Groups and Related Topics by : Benson Farb
Download or read book Problems on Mapping Class Groups and Related Topics written by Benson Farb and published by American Mathematical Soc.. This book was released on 2006-09-12 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.
Download or read book Erdös Centennial written by László Lovász and published by Springer Science & Business Media. This book was released on 2014-01-24 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: Paul Erdös was one of the most influential mathematicians of the twentieth century, whose work in number theory, combinatorics, set theory, analysis, and other branches of mathematics has determined the development of large areas of these fields. In 1999, a conference was organized to survey his work, his contributions to mathematics, and the far-reaching impact of his work on many branches of mathematics. On the 100th anniversary of his birth, this volume undertakes the almost impossible task to describe the ways in which problems raised by him and topics initiated by him (indeed, whole branches of mathematics) continue to flourish. Written by outstanding researchers in these areas, these papers include extensive surveys of classical results as well as of new developments.
Book Synopsis Noncommutative Geometry, Quantum Fields and Motives by : Alain Connes
Download or read book Noncommutative Geometry, Quantum Fields and Motives written by Alain Connes and published by American Mathematical Soc.. This book was released on 2019-03-13 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.
Book Synopsis Complexity Dichotomies for Counting Problems by : Jin-yi Cai
Download or read book Complexity Dichotomies for Counting Problems written by Jin-yi Cai and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Complexity theory aims to understand and classify computational problems, especially decision problems, according to their inherent complexity. This book uses new techniques to expand the theory for use with counting problems. The authors present dichotomy classifications for broad classes of counting problems in the realm of P and NP. Classifications are proved for partition functions of spin systems, graph homomorphisms, constraint satisfaction problems, and Holant problems. The book assumes minimal prior knowledge of computational complexity theory, developing proof techniques as needed and gradually increasing the generality and abstraction of the theory. This volume presents the theory on the Boolean domain, and includes a thorough presentation of holographic algorithms, culminating in classifications of computational problems studied in exactly solvable models from statistical mechanics
Book Synopsis Eigenspaces of Graphs by : Dragoš M. Cvetković
Download or read book Eigenspaces of Graphs written by Dragoš M. Cvetković and published by Cambridge University Press. This book was released on 1997-01-09 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current research on the spectral theory of finite graphs may be seen as part of a wider effort to forge closer links between algebra and combinatorics (in particular between linear algebra and graph theory).This book describes how this topic can be strengthened by exploiting properties of the eigenspaces of adjacency matrices associated with a graph. The extension of spectral techniques proceeds at three levels: using eigenvectors associated with an arbitrary labelling of graph vertices, using geometrical invariants of eigenspaces such as graph angles and main angles, and introducing certain kinds of canonical eigenvectors by means of star partitions and star bases. One objective is to describe graphs by algebraic means as far as possible, and the book discusses the Ulam reconstruction conjecture and the graph isomorphism problem in this context. Further problems of graph reconstruction and identification are used to illustrate the importance of graph angles and star partitions in relation to graph structure. Specialists in graph theory will welcome this treatment of important new research.
Book Synopsis Extremal Finite Set Theory by : Daniel Gerbner
Download or read book Extremal Finite Set Theory written by Daniel Gerbner and published by CRC Press. This book was released on 2018-10-12 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extremal Finite Set Theory surveys old and new results in the area of extremal set system theory. It presents an overview of the main techniques and tools (shifting, the cycle method, profile polytopes, incidence matrices, flag algebras, etc.) used in the different subtopics. The book focuses on the cardinality of a family of sets satisfying certain combinatorial properties. It covers recent progress in the subject of set systems and extremal combinatorics. Intended for graduate students, instructors teaching extremal combinatorics and researchers, this book serves as a sound introduction to the theory of extremal set systems. In each of the topics covered, the text introduces the basic tools used in the literature. Every chapter provides detailed proofs of the most important results and some of the most recent ones, while the proofs of some other theorems are posted as exercises with hints. Features: Presents the most basic theorems on extremal set systems Includes many proof techniques Contains recent developments The book’s contents are well suited to form the syllabus for an introductory course About the Authors: Dániel Gerbner is a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences in Budapest, Hungary. He holds a Ph.D. from Eötvös Loránd University, Hungary and has contributed to numerous publications. His research interests are in extremal combinatorics and search theory. Balázs Patkós is also a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. He holds a Ph.D. from Central European University, Budapest and has authored several research papers. His research interests are in extremal and probabilistic combinatorics.
Book Synopsis Handbook of Combinatorics by : R.L. Graham
Download or read book Handbook of Combinatorics written by R.L. Graham and published by Elsevier. This book was released on 1995-12-11 with total page 1283 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Category Theory for Computing Science by : Michael Barr
Download or read book Category Theory for Computing Science written by Michael Barr and published by . This book was released on 1995 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: A wide coverage of topics in category theory and computer science is developed in this text, including introductory treatments of cartesian closed categories, sketches and elementary categorical model theory, and triples. Over 300 exercises are included.
Book Synopsis Graphs and Homomorphisms by : Pavol Hell
Download or read book Graphs and Homomorphisms written by Pavol Hell and published by OUP Oxford. This book was released on 2004-07-22 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book about graph homomorphisms. Graph theory is now an established discipline but the study of graph homomorphisms has only recently begun to gain wide acceptance and interest. The subject gives a useful perspective in areas such as graph reconstruction, products, fractional and circular colourings, and has applications in complexity theory, artificial intelligence, telecommunication, and, most recently, statistical physics. Based on the authors' lecture notes for graduate courses, this book can be used as a textbook for a second course in graph theory at 4th year or master's level and has been used for courses at Simon Fraser University (Vancouver), Charles University (Prague), ETH (Zurich), and UFRJ (Rio de Janeiro). The exercises vary in difficulty. The first few are usually intended to give the reader an opportunity to practice the concepts introduced in the chapter; the later ones explore related concepts, or even introduce new ones. For the harder exercises hints and references are provided. The authors are well known for their research in this area and the book will be invaluable to graduate students and researchers alike.