Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Extended Models Of Coulomb Scattering For The Monte Carlo Simulation Of Nanoscale Silicon Mosfets
Download Extended Models Of Coulomb Scattering For The Monte Carlo Simulation Of Nanoscale Silicon Mosfets full books in PDF, epub, and Kindle. Read online Extended Models Of Coulomb Scattering For The Monte Carlo Simulation Of Nanoscale Silicon Mosfets ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Nanoscale MOS Transistors by : David Esseni
Download or read book Nanoscale MOS Transistors written by David Esseni and published by Cambridge University Press. This book was released on 2011-01-20 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written from an engineering standpoint, this book provides the theoretical background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOS nanoscale transistors. A wealth of applications, illustrations and examples connect the methods described to all the latest issues in nanoscale MOSFET design. Key areas covered include: • Transport in arbitrary crystal orientations and strain conditions, and new channel and gate stack materials • All the relevant transport regimes, ranging from low field mobility to quasi-ballistic transport, described using a single modeling framework • Predictive capabilities of device models, discussed with systematic comparisons to experimental results
Book Synopsis Frontiers In Electronics: Advanced Modeling Of Nanoscale Electron Devices by : Benjamin Iniguez
Download or read book Frontiers In Electronics: Advanced Modeling Of Nanoscale Electron Devices written by Benjamin Iniguez and published by World Scientific. This book was released on 2014-01-10 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of four chapters to address at different modeling levels for different nanoscale MOS structures (Single- and Multi-Gate MOSFETs). The collection of these chapters in the book are attempted to provide a comprehensive coverage on the different levels of electrostatics and transport modeling for these devices, and relationships between them. In particular, the issue of quantum transport approaches, analytical predictive 2D/3D modeling and design-oriented compact modeling. It should be of interests to researchers working on modeling at any level, to provide them with a clear explanation of theapproaches used and the links with modeling techniques for either higher or lower levels.
Book Synopsis Hot Carrier Degradation in Semiconductor Devices by : Tibor Grasser
Download or read book Hot Carrier Degradation in Semiconductor Devices written by Tibor Grasser and published by Springer. This book was released on 2014-10-29 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices. Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance.
Book Synopsis Future Trends in Microelectronics by : Serge Luryi
Download or read book Future Trends in Microelectronics written by Serge Luryi and published by John Wiley & Sons. This book was released on 2007-06-22 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book leading profesionals in the semiconductor microelectronics field discuss the future evolution of their profession. The following are some of the questions discussed: Does CMOS technology have a real problem? Do transistors have to be smaller or just better and made of better materials? What is to come after semiconductors? Superconductors or molecular conductors? Is bottom-up self-assembling the answer to the limitation of top-down lithography? Is it time for Optics to become a force in computer evolution? Quantum Computing, Spintronics? Where is the printable plastic electronics proposed 10 years ago? Are carbon nanotube transistors the CMOS of the future?
Book Synopsis Trends in Nanophysics by : Alexandru Aldea
Download or read book Trends in Nanophysics written by Alexandru Aldea and published by Springer Science & Business Media. This book was released on 2010-08-05 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores a variety of diverse issues in nanotechnology, including radiation-induced polymerization, cross-linking and grafting; Mossbauer study of nanomaterials; biomedical applications of nanomaterials; graphene and carbon nanotubes; and many more.
Book Synopsis The Monte Carlo Method for Semiconductor Device Simulation by : Carlo Jacoboni
Download or read book The Monte Carlo Method for Semiconductor Device Simulation written by Carlo Jacoboni and published by Springer Science & Business Media. This book was released on 1989-10-30 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the application of the Monte Carlo method to the simulation of semiconductor devices, reviewing the physics of transport in semiconductors, followed by an introduction to the physics of semiconductor devices.
Book Synopsis Fundamentals of Nanotransistors by : Mark Lundstrom
Download or read book Fundamentals of Nanotransistors written by Mark Lundstrom and published by World Scientific Publishing Company Incorporated. This book was released on 2018 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The transistor is the key enabler of modern electronics. Progress in transistor scaling has pushed channel lengths to the nanometer regime where traditional approaches to device physics are less and less suitable. These lectures describe a way of understanding MOSFETs and other transistors that is much more suitable than traditional approaches when the critical dimensions are measured in nanometers. It uses a novel, "bottom-up approach" that agrees with traditional methods when devices are large, but that also works for nano-devices. Surprisingly, the final result looks much like the traditional, textbook, transistor models, but the parameters in the equations have simple, clear interpretations at the nanoscale. The objective is to provide readers with an understanding of the essential physics of nanoscale transistors as well as some of the practical technological considerations and fundamental limits. This book is written in a way that is broadly accessible to students with only a very basic knowledge of semiconductor physics and electronic circuits.
Book Synopsis Nanoscale Transistors by : Mark Lundstrom
Download or read book Nanoscale Transistors written by Mark Lundstrom and published by Springer Science & Business Media. This book was released on 2006-06-18 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: To push MOSFETs to their scaling limits and to explore devices that may complement or even replace them at molecular scale, a clear understanding of device physics at nanometer scale is necessary. Nanoscale Transistors provides a description on the recent development of theory, modeling, and simulation of nanotransistors for electrical engineers, physicists, and chemists working on nanoscale devices. Simple physical pictures and semi-analytical models, which were validated by detailed numerical simulations, are provided for both evolutionary and revolutionary nanotransistors. After basic concepts are reviewed, the text summarizes the essentials of traditional semiconductor devices, digital circuits, and systems to supply a baseline against which new devices can be assessed. A nontraditional view of the MOSFET using concepts that are valid at nanoscale is developed and then applied to nanotube FET as an example of how to extend the concepts to revolutionary nanotransistors. This practical guide then explore the limits of devices by discussing conduction in single molecules
Book Synopsis Mosfet Modeling For Circuit Analysis And Design by : Carlos Galup-montoro
Download or read book Mosfet Modeling For Circuit Analysis And Design written by Carlos Galup-montoro and published by World Scientific. This book was released on 2007-02-27 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.
Book Synopsis Simulation of Semiconductor Processes and Devices 2004 by : Gerhard Wachutka
Download or read book Simulation of Semiconductor Processes and Devices 2004 written by Gerhard Wachutka and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the 10th edition of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2004), held in Munich, Germany, on September 2-4, 2004. The conference program included 7 invited plenary lectures and 82 contributed papers for oral or poster presentation, which were carefully selected out of a total of 151 abstracts submitted from 14 countries around the world. Like the previous meetings, SISPAD 2004 provided a world-wide forum for the presentation and discussion of recent advances and developments in the theoretical description, physical modeling and numerical simulation and analysis of semiconductor fabrication processes, device operation and system performance. The variety of topics covered by the conference contributions reflects the physical effects and technological problems encountered in consequence of the progressively shrinking device dimensions and the ever-growing complexity in device technology.
Author :Christoph Jungemann Publisher :Springer Science & Business Media ISBN 13 :9783211013618 Total Pages :282 pages Book Rating :4.0/5 (136 download)
Book Synopsis Hierarchical Device Simulation by : Christoph Jungemann
Download or read book Hierarchical Device Simulation written by Christoph Jungemann and published by Springer Science & Business Media. This book was released on 2003-06-05 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is the first on physics-based simulations of novel strained Si and SiGe devices. It provides an in-depth description of the full-band monte-carlo method for SiGe and discusses the common theoretical background of the drift-diffusion, hydrodynamic and Monte-Carlo models and their synergy.
Book Synopsis Bias Temperature Instability for Devices and Circuits by : Tibor Grasser
Download or read book Bias Temperature Instability for Devices and Circuits written by Tibor Grasser and published by Springer Science & Business Media. This book was released on 2013-10-22 with total page 805 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a single-source reference to one of the more challenging reliability issues plaguing modern semiconductor technologies, negative bias temperature instability. Readers will benefit from state-of-the art coverage of research in topics such as time dependent defect spectroscopy, anomalous defect behavior, stochastic modeling with additional metastable states, multiphonon theory, compact modeling with RC ladders and implications on device reliability and lifetime.
Book Synopsis Transport in Nanostructures by : David K. Ferry
Download or read book Transport in Nanostructures written by David K. Ferry and published by Cambridge University Press. This book was released on 2009-08-20 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.
Book Synopsis Compact Modeling by : Gennady Gildenblat
Download or read book Compact Modeling written by Gennady Gildenblat and published by Springer Science & Business Media. This book was released on 2010-06-22 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.
Book Synopsis Strain Effect in Semiconductors by : Yongke Sun
Download or read book Strain Effect in Semiconductors written by Yongke Sun and published by Springer Science & Business Media. This book was released on 2009-11-14 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Strain Effect in Semiconductors: Theory and Device Applications presents the fundamentals and applications of strain in semiconductors and semiconductor devices that is relevant for strain-enhanced advanced CMOS technology and strain-based piezoresistive MEMS transducers. Discusses relevant applications of strain while also focusing on the fundamental physics pertaining to bulk, planar, and scaled nano-devices. Hence, this book is relevant for current strained Si logic technology as well as for understanding the physics and scaling for future strained nano-scale devices.
Book Synopsis Computational Electronics by : Karl Hess
Download or read book Computational Electronics written by Karl Hess and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large computational resources are of ever increasing importance for the simulation of semiconductor processes, devices and integrated circuits. The Workshop on Computational Electronics was intended to be a forum for the dis cussion of the state-of-the-art of device simulation. Three major research areas were covered: conventional simulations, based on the drift-diffusion and the hydrodynamic models; Monte Carlo methods and other techniques for the solution of the Boltzmann transport equation; and computational approaches to quantum transport which are relevant to novel devices based on quantum interference and resonant tunneling phenomena. Our goal was to bring together researchers from various disciplines that contribute to the advancement of device simulation. These include Computer Sci ence, Electrical Engineering, Applied Physics and Applied Mathematics. The suc cess of this multidisciplinary formula was proven by numerous interactions which took place at the Workshop and during the following three-day Short Course on Computational Electronics. The format of the course, including a number of tutorial lectures, and the large attendance of graduate students, stimulated many discussions and has proven to us once more the importance of cross-fertilization between the different disciplines.
Book Synopsis Random Telegraph Signals in Semiconductor Devices by : Eddy Simoen
Download or read book Random Telegraph Signals in Semiconductor Devices written by Eddy Simoen and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Following their first observation in 1984, random telegraph signals (RTSs) were initially a purely scientific tool to study fundamental aspects of defects in semiconductor devices. As semiconductor devices move to the nanoscale however, RTSs have become an issue of major concern to the semiconductor industry, both in development of current technology, such as memory devices and logic circuits, as well as in future semiconductor devices beyond the silicon roadmap, such as nanowire, TFET and carbon nanotube-based devices. It has become clear that the reliability of state-of-the-art and future CMOS technology nodes is dominated by RTS and single trap phenomena, and so its understanding is of vital importance for the modelling and simulation of the operation and the expected lifetime of CMOS devices and circuits. It is the aim of this book to provide a comprehensive and up-to-date review of one of the most challenging issues facing the semiconductor industry, from the fundamentals of RTSs to applied technology."--Prové de l'editor.