Deep Learning in Computer Vision

Download Deep Learning in Computer Vision PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351003801
Total Pages : 275 pages
Book Rating : 4.3/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning in Computer Vision by : Mahmoud Hassaballah

Download or read book Deep Learning in Computer Vision written by Mahmoud Hassaballah and published by CRC Press. This book was released on 2020-03-23 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.

FPGA Implementations of Neural Networks

Download FPGA Implementations of Neural Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387284877
Total Pages : 365 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis FPGA Implementations of Neural Networks by : Amos R. Omondi

Download or read book FPGA Implementations of Neural Networks written by Amos R. Omondi and published by Springer Science & Business Media. This book was released on 2006-10-04 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the 1980s and early 1990s there was signi?cant work in the design and implementation of hardware neurocomputers. Nevertheless, most of these efforts may be judged to have been unsuccessful: at no time have have ha- ware neurocomputers been in wide use. This lack of success may be largely attributed to the fact that earlier work was almost entirely aimed at developing custom neurocomputers, based on ASIC technology, but for such niche - eas this technology was never suf?ciently developed or competitive enough to justify large-scale adoption. On the other hand, gate-arrays of the period m- tioned were never large enough nor fast enough for serious arti?cial-neur- network (ANN) applications. But technology has now improved: the capacity and performance of current FPGAs are such that they present a much more realistic alternative. Consequently neurocomputers based on FPGAs are now a much more practical proposition than they have been in the past. This book summarizes some work towards this goal and consists of 12 papers that were selected, after review, from a number of submissions. The book is nominally divided into three parts: Chapters 1 through 4 deal with foundational issues; Chapters 5 through 11 deal with a variety of implementations; and Chapter 12 looks at the lessons learned from a large-scale project and also reconsiders design issues in light of current and future technology.

Efficient Processing of Deep Neural Networks

Download Efficient Processing of Deep Neural Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031017668
Total Pages : 254 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Efficient Processing of Deep Neural Networks by : Vivienne Sze

Download or read book Efficient Processing of Deep Neural Networks written by Vivienne Sze and published by Springer Nature. This book was released on 2022-05-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

VLSI and Hardware Implementations using Modern Machine Learning Methods

Download VLSI and Hardware Implementations using Modern Machine Learning Methods PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000523810
Total Pages : 329 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis VLSI and Hardware Implementations using Modern Machine Learning Methods by : Sandeep Saini

Download or read book VLSI and Hardware Implementations using Modern Machine Learning Methods written by Sandeep Saini and published by CRC Press. This book was released on 2021-12-30 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is a potential solution to resolve bottleneck issues in VLSI via optimizing tasks in the design process. This book aims to provide the latest machine-learning–based methods, algorithms, architectures, and frameworks designed for VLSI design. The focus is on digital, analog, and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas. Chapters include case studies as well as novel research ideas in the given field. Overall, the book provides practical implementations of VLSI design, IC design, and hardware realization using machine learning techniques. Features: Provides the details of state-of-the-art machine learning methods used in VLSI design Discusses hardware implementation and device modeling pertaining to machine learning algorithms Explores machine learning for various VLSI architectures and reconfigurable computing Illustrates the latest techniques for device size and feature optimization Highlights the latest case studies and reviews of the methods used for hardware implementation This book is aimed at researchers, professionals, and graduate students in VLSI, machine learning, electrical and electronic engineering, computer engineering, and hardware systems.

Progress in Image Processing, Pattern Recognition and Communication Systems

Download Progress in Image Processing, Pattern Recognition and Communication Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030815234
Total Pages : 362 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Progress in Image Processing, Pattern Recognition and Communication Systems by : Michal Choraś

Download or read book Progress in Image Processing, Pattern Recognition and Communication Systems written by Michal Choraś and published by Springer Nature. This book was released on 2021-08-17 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a collection of high-quality research papers accepted to multi-conference consisting of International Conference on Image Processing and Communications (IP&C 2021), International Conference on Computer Recognition Systems (CORES 2021), International Conference on Advanced Computer Systems (ACS 2021) held jointly in Bydgoszcz, Poland (virtually), in June 2021. The accepted papers address current computer science and computer systems-related technological challenges and solutions, as well as many practical applications and results. The first part of the book deals with advances in pattern recognition and classifiers, the second part is devoted to image processing and computer vision, while the third part addresses practical applications of computer recognition systems. Machine learning solutions for security and networks are tackled in part four of the book, while the last part collects papers on progress in advanced computer systems. We believe this book will be interesting for researchers and practitioners in many fields of computer science and IT applications.

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design

Download Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119507391
Total Pages : 300 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design by : Nan Zheng

Download or read book Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design written by Nan Zheng and published by John Wiley & Sons. This book was released on 2019-10-18 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains current co-design and co-optimization methodologies for building hardware neural networks and algorithms for machine learning applications This book focuses on how to build energy-efficient hardware for neural networks with learning capabilities—and provides co-design and co-optimization methodologies for building hardware neural networks that can learn. Presenting a complete picture from high-level algorithm to low-level implementation details, Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design also covers many fundamentals and essentials in neural networks (e.g., deep learning), as well as hardware implementation of neural networks. The book begins with an overview of neural networks. It then discusses algorithms for utilizing and training rate-based artificial neural networks. Next comes an introduction to various options for executing neural networks, ranging from general-purpose processors to specialized hardware, from digital accelerator to analog accelerator. A design example on building energy-efficient accelerator for adaptive dynamic programming with neural networks is also presented. An examination of fundamental concepts and popular learning algorithms for spiking neural networks follows that, along with a look at the hardware for spiking neural networks. Then comes a chapter offering readers three design examples (two of which are based on conventional CMOS, and one on emerging nanotechnology) to implement the learning algorithm found in the previous chapter. The book concludes with an outlook on the future of neural network hardware. Includes cross-layer survey of hardware accelerators for neuromorphic algorithms Covers the co-design of architecture and algorithms with emerging devices for much-improved computing efficiency Focuses on the co-design of algorithms and hardware, which is especially critical for using emerging devices, such as traditional memristors or diffusive memristors, for neuromorphic computing Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design is an ideal resource for researchers, scientists, software engineers, and hardware engineers dealing with the ever-increasing requirement on power consumption and response time. It is also excellent for teaching and training undergraduate and graduate students about the latest generation neural networks with powerful learning capabilities.

Intelligence Science IV

Download Intelligence Science IV PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031149033
Total Pages : 481 pages
Book Rating : 4.0/5 (311 download)

DOWNLOAD NOW!


Book Synopsis Intelligence Science IV by : Zhongzhi Shi

Download or read book Intelligence Science IV written by Zhongzhi Shi and published by Springer Nature. This book was released on 2022-10-19 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th International Conference on Intelligence Science, ICIS 2022, held in Xi'an, China, in August 2022. The 41 full and 5 short papers presented in this book were carefully reviewed and selected from 85 submissions. They were organized in topical sections as follows: Brain cognition; machine learning; data intelligence; language cognition; remote sensing images; perceptual intelligence; wireless sensor; and medical artificial intelligence.

Context-Aware Systems and Applications

Download Context-Aware Systems and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303093179X
Total Pages : 347 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Context-Aware Systems and Applications by : Phan Cong Vinh

Download or read book Context-Aware Systems and Applications written by Phan Cong Vinh and published by Springer Nature. This book was released on 2022-01-06 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed post-conference proceedings of the International Conference on Context-Aware Systems and Applications, held in October 2021. Due to COVID-19 pandemic the conference was held virtually. The 25 revised full papers presented were carefully selected from 52 submissions. The papers cover a wide spectrum of modern approaches and techniques for smart computing systems and their applications.

Arithmetic Complexity of Computations

Download Arithmetic Complexity of Computations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611970364
Total Pages : 96 pages
Book Rating : 4.9/5 (73 download)

DOWNLOAD NOW!


Book Synopsis Arithmetic Complexity of Computations by : Shmuel Winograd

Download or read book Arithmetic Complexity of Computations written by Shmuel Winograd and published by SIAM. This book was released on 1980-01-01 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on finding the minimum number of arithmetic operations needed to perform the computation and on finding a better algorithm when improvement is possible. The author concentrates on that class of problems concerned with computing a system of bilinear forms. Results that lead to applications in the area of signal processing are emphasized, since (1) even a modest reduction in the execution time of signal processing problems could have practical significance; (2) results in this area are relatively new and are scattered in journal articles; and (3) this emphasis indicates the flavor of complexity of computation.

Hardware Accelerator Systems for Artificial Intelligence and Machine Learning

Download Hardware Accelerator Systems for Artificial Intelligence and Machine Learning PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128231246
Total Pages : 416 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Hardware Accelerator Systems for Artificial Intelligence and Machine Learning by :

Download or read book Hardware Accelerator Systems for Artificial Intelligence and Machine Learning written by and published by Academic Press. This book was released on 2021-03-28 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Volume 122 delves into arti?cial Intelligence and the growth it has seen with the advent of Deep Neural Networks (DNNs) and Machine Learning. Updates in this release include chapters on Hardware accelerator systems for artificial intelligence and machine learning, Introduction to Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Deep Learning with GPUs, Edge Computing Optimization of Deep Learning Models for Specialized Tensor Processing Architectures, Architecture of NPU for DNN, Hardware Architecture for Convolutional Neural Network for Image Processing, FPGA based Neural Network Accelerators, and much more. - Updates on new information on the architecture of GPU, NPU and DNN - Discusses In-memory computing, Machine intelligence and Quantum computing - Includes sections on Hardware Accelerator Systems to improve processing efficiency and performance

Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays

Download Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays PDF Online Free

Author :
Publisher :
ISBN 13 : 9781450343541
Total Pages : pages
Book Rating : 4.3/5 (435 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays by : Jonathan Greene

Download or read book Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays written by Jonathan Greene and published by . This book was released on 2017-02-22 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: FPGA '17: The 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays Feb 22, 2017-Feb 24, 2017 Monterey, USA. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.

Exploring Zynq Mpsoc

Download Exploring Zynq Mpsoc PDF Online Free

Author :
Publisher :
ISBN 13 : 9780992978754
Total Pages : 642 pages
Book Rating : 4.9/5 (787 download)

DOWNLOAD NOW!


Book Synopsis Exploring Zynq Mpsoc by : Louise H Crockett

Download or read book Exploring Zynq Mpsoc written by Louise H Crockett and published by . This book was released on 2019-04-11 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the Zynq MPSoC (Multi-Processor System-on-Chip), an embedded device from Xilinx. The Zynq MPSoC combines a sophisticated processing system that includes ARM Cortex-A53 applications and ARM Cortex-R5 real-time processors, with FPGA programmable logic. As well as guiding the reader through the architecture of the device, design tools and methods are also covered in detail: both the conventional hardware/software co-design approach, and the newer software-defined methodology using Xilinx's SDx development environment. Featured aspects of Zynq MPSoC design include hardware and software development, multiprocessing, safety, security and platform management, and system booting. There are also special features on PYNQ, the Python-based framework for Zynq devices, and machine learning applications. This book should serve as a useful guide for those working with Zynq MPSoC, and equally as a reference for technical managers wishing to gain familiarity with the device and its associated design methodologies.

Membrane Computing

Download Membrane Computing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030127974
Total Pages : 288 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Membrane Computing by : Thomas Hinze

Download or read book Membrane Computing written by Thomas Hinze and published by Springer. This book was released on 2019-01-31 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes revised selected papers from the 19th International Conference on Membrane Computing (CMC19), CMC 2018, which was held in Dresden, Germany, in September 2018. The 15 papers presented in this volume were carefully reviewed and selected from 20 submissions. The contributions aim to abstract computing ideas and models from the structure and the functioning of living cells, as well as from the way the cells are organized in tissues or higher order structures.

Neuro-inspired Computing for Next-gen AI: Computing Model, Architectures and Learning Algorithms

Download Neuro-inspired Computing for Next-gen AI: Computing Model, Architectures and Learning Algorithms PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889768562
Total Pages : 160 pages
Book Rating : 4.8/5 (897 download)

DOWNLOAD NOW!


Book Synopsis Neuro-inspired Computing for Next-gen AI: Computing Model, Architectures and Learning Algorithms by : Angeliki Pantazi

Download or read book Neuro-inspired Computing for Next-gen AI: Computing Model, Architectures and Learning Algorithms written by Angeliki Pantazi and published by Frontiers Media SA. This book was released on 2022-08-29 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:

TinyML

Download TinyML PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492052019
Total Pages : 504 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis TinyML by : Pete Warden

Download or read book TinyML written by Pete Warden and published by O'Reilly Media. This book was released on 2019-12-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size

Hardware Architectures for Deep Learning

Download Hardware Architectures for Deep Learning PDF Online Free

Author :
Publisher : Institution of Engineering and Technology
ISBN 13 : 1785617680
Total Pages : 329 pages
Book Rating : 4.7/5 (856 download)

DOWNLOAD NOW!


Book Synopsis Hardware Architectures for Deep Learning by : Masoud Daneshtalab

Download or read book Hardware Architectures for Deep Learning written by Masoud Daneshtalab and published by Institution of Engineering and Technology. This book was released on 2020-02-28 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents and discusses innovative ideas in the design, modelling, implementation, and optimization of hardware platforms for neural networks.

NANO-CHIPS 2030

Download NANO-CHIPS 2030 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030183386
Total Pages : 597 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis NANO-CHIPS 2030 by : Boris Murmann

Download or read book NANO-CHIPS 2030 written by Boris Murmann and published by Springer Nature. This book was released on 2020-06-08 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, a global team of experts from academia, research institutes and industry presents their vision on how new nano-chip architectures will enable the performance and energy efficiency needed for AI-driven advancements in autonomous mobility, healthcare, and man-machine cooperation. Recent reviews of the status quo, as presented in CHIPS 2020 (Springer), have prompted the need for an urgent reassessment of opportunities in nanoelectronic information technology. As such, this book explores the foundations of a new era in nanoelectronics that will drive progress in intelligent chip systems for energy-efficient information technology, on-chip deep learning for data analytics, and quantum computing. Given its scope, this book provides a timely compendium that hopes to inspire and shape the future of nanoelectronics in the decades to come.