Exploration of High Efficiency Pathways in Dual Fuel Low Temperature Combustion Engines

Download Exploration of High Efficiency Pathways in Dual Fuel Low Temperature Combustion Engines PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 313 pages
Book Rating : 4.:/5 (125 download)

DOWNLOAD NOW!


Book Synopsis Exploration of High Efficiency Pathways in Dual Fuel Low Temperature Combustion Engines by : Prabhat Ranjan Jha

Download or read book Exploration of High Efficiency Pathways in Dual Fuel Low Temperature Combustion Engines written by Prabhat Ranjan Jha and published by . This book was released on 2020 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: It's crucial to use advanced combustion strategies to increase efficiency and decrease engine-out pollutants because of the compelling need to reduce the global carbon footprint. This dissertation proposes dual fuel low-temperature combustion as a viable strategy to decrease engine-out emissions and increase the thermal efficiency of future heavy-duty internal combustion (IC) engines. In dual fuel combustion, a low reactivity fuel (e.g. methane, propane) is ignited by a high reactivity fuel (diesel) in a compression-ignited engine. Generally, the energy fraction of low reactivity fuel is maintained at much higher levels than the energy fraction of the high reactivity fuel. For a properly calibrated engine, combustion occurs at lean and low-temperature conditions (LTC). This decreases the chances of the formation of soot and oxides of nitrogen within the engine. However, at low load conditions, this type of combustion results in high hydrocarbon and carbon monoxide emissions. The first part of this research experimentally examines the effect of methane (a natural gas surrogate) substitution on early injection dual fuel combustion at representative low loads of 3.3 and 5.0 bar BMEPs in a single-cylinder compression ignition engine (SCRE). Gaseous methane fumigated into the intake manifold at various methane energy fractions was ignited using a high-pressure diesel pilot injection at 310 CAD. Cyclic combustion variations at both loads were also analyzed to obtain further insights into the combustion process and identify opportunities to further improve fuel conversion efficiencies at low load operation. In the second part, the cyclic variations in dual fuel combustion of three different low reactivity fuels (methane, propane, and gasoline) ignited using a high-pressure diesel pilot injection was examined and the challenges and opportunities in utilizing methane, propane, and gasoline in diesel ignited dual fuel combustion, as well as strategies for mitigating cyclic variations, were explored. Finally, in the third part a CFD model was created for diesel methane dual fuel LTC. The validated model was used to investigate the effect of methane on diesel autoignition and various spray targeting strategies were explored to mitigate high hydrocarbon and carbon monoxide emissions at low load conditions.

Pathways for Low Emissions Utilizing Spray Targeted Reactivity Stratification (STARS) in High Efficiency Natural Gas Dual Fuel Combustion

Download Pathways for Low Emissions Utilizing Spray Targeted Reactivity Stratification (STARS) in High Efficiency Natural Gas Dual Fuel Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (136 download)

DOWNLOAD NOW!


Book Synopsis Pathways for Low Emissions Utilizing Spray Targeted Reactivity Stratification (STARS) in High Efficiency Natural Gas Dual Fuel Combustion by : James S Harris

Download or read book Pathways for Low Emissions Utilizing Spray Targeted Reactivity Stratification (STARS) in High Efficiency Natural Gas Dual Fuel Combustion written by James S Harris and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Internal combustion engines are a key aspect of society, and their continued use poses challenges from an environmental standpoint since they emit pollutant and greenhouse gas emissions. This dissertation focuses on experimental analysis of dual-fuel low temperature combustion (LTC), which can be used as a strategy to reduce engine-out emissions and increase engine efficiencies. Dual fuel LTC uses two different fuels, a high reactivity fuel (HRF) and a low reactivity fuel (LRF). The HRF has a higher cetane number than the LRF, which allows for easier auto-ignition in compression ignition engines. Dual fuel engines also utilize high air to fuel ratios to achieve LTC. This, combined with early injection timings of the HRF, helps to reduce oxides of nitrogen (NOx) emissions. At low load conditions, this is a problem since higher cycle-to-cycle variations can increase pollutants such as unburned hydrocarbons (UHC) and carbon monoxide (CO). To combat this, a firm understanding of dual fuel LTC is required, as well as a strategy for reducing the cycle-to-cycle variations. The first part of this work further identifies a combustion heat release 'transformation region' across different HRF injection timings wherein in-cylinder conditions arise that are conducive for ultra-low NOx emissions. This phenomenon occurs for different IC engine platforms and different fueling combinations. An experimental analysis, 0D chemical kinetic analysis, and 3D computation fluid dynamic (CFD) analysis were combined to elucidate the underlying causes for this phenomenon. The local stratification level of the fuel/air mixture was identified as the likely cause of combustion heat release transformation with changing HRF injection timing. The second part of the present work builds upon the findings of the first part by utilizing local stratification to mitigate cycle-to-cycle variations that are present at low loads. A framework of experiments was formulated for both a low engine load of 5 bar gross indicated mean effective pressure (IMEPg) and a high load of 15 bar IMEPg, wherein an injection strategy concept termed Spray TArgeted Reactivity Stratification (STARS) was utilized using both diesel and Polyoxymethelene-dimethyl-ether (POMDME) as HRFs. A steep decrease in UHC and CO emissions (> 80% reductions) as well as improved engine operation stability were demonstrated using both HRFs with dual fuel LTC at 5 bar IMEPg. Further, potential for emissions mitigation and efficiency improvement are discussed, as well as differences in the experimental results shown between the differing HRFs.

A Pathway to Higher Efficiency Internal Combustion Engines Through Thermochemical Recovery and Fuel Reforming

Download A Pathway to Higher Efficiency Internal Combustion Engines Through Thermochemical Recovery and Fuel Reforming PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (14 download)

DOWNLOAD NOW!


Book Synopsis A Pathway to Higher Efficiency Internal Combustion Engines Through Thermochemical Recovery and Fuel Reforming by : Flavio Dal Forno Chuahy

Download or read book A Pathway to Higher Efficiency Internal Combustion Engines Through Thermochemical Recovery and Fuel Reforming written by Flavio Dal Forno Chuahy and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dual fuel reactivity controlled compression ignition (RCCI) combustion is a promising method to achieve high efficiency with near zero NOx and soot emissions; however, the requirement to carry two fuels on-board has limited practical applications. Advancements in catalytic reforming have demonstrated the ability to generate syngas (a mixture of CO and hydrogen) from a single hydrocarbon stream. The reformed fuel mixture can then be used as a low reactivity fuel stream to enable RCCI out of a single parent fuel. Beyond enabling dual-fuel combustion strategies out of a single parent fuel, fuel reforming can be endothermic and allow recovery of exhaust heat to drive the reforming reactions, potentially improving overall efficiency of the system. Previous works have focused on using reformed fuel to extend the lean limit of spark ignited engines, and enhancing the control of HCCI type combustion. The strategy pairs naturally with advanced dual-fuel combustion strategies, and the use of dual-fuel strategies in the context of on-board reforming and energy recovery has not been explored. Accordingly, the work presented in this dissertation attempts to fill in the gaps in the current literature and provide a pathway to "single" fuel RCCI combustion through a combination of experiments and computational fluid dynamics modeling. Initially, a system level analysis focusing on three common reforming techniques (i.e., partial oxidation, steam reforming and auto-thermal reforming) was conducted to evaluate the potential of reformed fuel. A system layout was proposed for each reforming technique and a detailed thermodynamic analysis using first- and second-law approaches were used to identify the sources of efficiency improvements. The results showed that reformed fuel combustion with a near TDC injection of diesel fuel can increase engine-only efficiency by 4% absolute when compared to a conventional diesel baseline. The efficiency improvements were a result of reduced heat transfer and shorter, more thermodynamically efficient, combustion process. For exothermic reforming processes, losses in the reformer outweigh the improvements to engine efficiency, while for endothermic processes the recovery of exhaust energy was able to allow the system efficiency to retain a large portion of the benefits to the engine combustion. Energy flow analysis showed that the reformer temperature and availability of high grade exhaust heat were the main limiting factors preventing higher efficiencies. RCCI combustion was explored experimentally for its potential to expand on the optimization results and achieve low soot and NOx emissions. The results showed that reformed fuel can be used with diesel to enable RCCI combustion and resulted in low NOx and soot emissions while achieving efficiencies similar to conventional diesel combustion. Experiments showed that the ratio H2/(H2+CO) is an important parameter for optimal engine operation. Under part-load conditions, fractions of H2/(H2+CO) higher than 60% led to pressure oscillations inside the cylinder that substantially increased heat transfer and negated any efficiency benefits. The system analysis approach was applied to the experimental results and showed that chemical equilibrium limited operation of the engine to sub-optimal operating conditions. RCCI combustion was able to achieve "diesel like" system level efficiencies without optimization of either the engine operating conditions or the combustion system. Reformed fuel RCCI was able to provide a pathway to meeting current and future emission targets with a reduction or complete elimination of aftertreatment costs. Particle size distribution experiments showed that addition of reformed fuel had a significant impact on the shape of the particle size distribution. Addition of reformed fuel reduced accumulation-mode particle concentration while increasing nucleation-mode particles. When considering the full range of particle sizes there was a significant increase in total particle concentration. However, when considering currently regulated (Dm>23nm) particles, total concentration was comparable. To address limitations identified in the system analysis of the RCCI experiments a solid oxide fuel cell was combined with the engine into a hybrid electrochemical combustion system. The addition of the fuel cell addresses the limitations by providing sufficient high grade heat to fully drive the reforming reactions. From a system level perspective, the impact of the high frequency oscillations observed in the experiments are reduced, as the system efficiency is less dependent on the engine efficiency. From an engine perspective, the high operating pressures and low reactivity of the anode gas allow reduction of the likelihood of such events. A 0-D system level code was developed and used to find representative conditions for experimental engine validation. The results showed that the system can achieve system electrical efficiencies higher than 70% at 1 MWe power level. Experimental validation showed that the engine was able to operate under both RCCI and HCCI combustion modes and resulted in low emissions and stable combustion. The potential of a hybrid electrochemical combustion system was demonstrated for high efficiency power generation

Characteristics and Control of Low Temperature Combustion Engines

Download Characteristics and Control of Low Temperature Combustion Engines PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319685082
Total Pages : 553 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Characteristics and Control of Low Temperature Combustion Engines by : Rakesh Kumar Maurya

Download or read book Characteristics and Control of Low Temperature Combustion Engines written by Rakesh Kumar Maurya and published by Springer. This book was released on 2017-11-03 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with novel advanced engine combustion technologies having potential of high fuel conversion efficiency along with ultralow NOx and particulate matter (PM) emissions. It offers insight into advanced combustion modes for efficient utilization of gasoline like fuels. Fundamentals of various advanced low temperature combustion (LTC) systems such as HCCI, PCCI, PPC and RCCI engines and their fuel quality requirements are also discussed. Detailed performance, combustion and emissions characteristics of futuristic engine technologies such as PPC and RCCI employing conventional as well as alternative fuels are analyzed and discussed. Special emphasis is placed on soot particle number emission characterization, high load limiting constraints, and fuel effects on combustion characteristics in LTC engines. For closed loop combustion control of LTC engines, sensors, actuators and control strategies are also discussed. The book should prove useful to a broad audience, including graduate students, researchers, and professionals Offers novel technologies for improved and efficient utilization of gasoline like fuels; Deals with most advanced and futuristic engine combustion modes such as PPC and RCCI; Comprehensible presentation of the performance, combustion and emissions characteristics of low temperature combustion (LTC) engines; Deals with closed loop combustion control of advanced LTC engines; State-of-the-art technology book that concisely summarizes the recent advancements in LTC technology. .

Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines

Download Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889666212
Total Pages : 125 pages
Book Rating : 4.8/5 (896 download)

DOWNLOAD NOW!


Book Synopsis Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines by : Hongsheng Guo

Download or read book Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines written by Hongsheng Guo and published by Frontiers Media SA. This book was released on 2021-03-23 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Direct Injection for Dual Fuel Stratification (DDFS)

Download Direct Injection for Dual Fuel Stratification (DDFS) PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 574 pages
Book Rating : 4.:/5 (927 download)

DOWNLOAD NOW!


Book Synopsis Direct Injection for Dual Fuel Stratification (DDFS) by :

Download or read book Direct Injection for Dual Fuel Stratification (DDFS) written by and published by . This book was released on 2015 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low temperature combustion (LTC) strategies can achieve high thermal efficiency with low engine-out NOx and soot emissions. However, controlling the timing and rate of heat release under LTC conditions in a consistent manner has proven to be difficult, and emissions of CO and unburned hydrocarbons (HC) are high. Several fueling strategies have been developed to create stratification of equivalence ratio and ignition delay such that heat release is retarded and lengthened, but these strategies typically result in a trade-off between efficiency and noise, a narrow operating range, or impractical boundary conditions, and the issue of high CO and HC emissions remains. In this research, a new strategy is proposed in which two fuels with different autoignition characteristics are introduced to the cylinder via multiple direct injections, allowing for greater control and range of reactivity and equivalence ratio distribution, as well as the possibility of mixed combustion modes. A series of experiments detail the development of the fueling strategy, an exploration of the parameters contributing to noise and emissions, a pathway to practical high-load operation, and a comparison to existing LTC strategies. By direct-injecting two fuels, it is possible to gain a new level of control over the shape and stability of the heat release event, along with the ability to combine and exploit the practical benefits of existing combustion strategies in a manner that was previously impossible.

Powertrain Systems for a Sustainable Future

Download Powertrain Systems for a Sustainable Future PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1003856950
Total Pages : 500 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Powertrain Systems for a Sustainable Future by : Institution of Mechanical Engineers (IMechE)

Download or read book Powertrain Systems for a Sustainable Future written by Institution of Mechanical Engineers (IMechE) and published by CRC Press. This book was released on 2023-11-02 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: The transport sector continues to shift towards alternative powertrains, particularly with the UK Government’s focus on ending the sale of petrol and diesel passenger cars by 2030 and increasing support for alternatives. Despite this announcement, the internal combustion could continue to play a significant role both in the passenger car market through the use of hybrids and sustainable low carbon fuels including hydrogen, as well as a key role in other sectors such as heavy-duty vehicles and off-highway applications across the globe. The contributions presented at the International Conference on Powertrain Systems for a Sustainable Future 2023 (London, UK, 29- 30 November 2023) focus on the internal combustion engine’s role in net-zero transport as well as covering developments in the wide range of propulsion systems available (electric, hydrogen internal combustion engines and fuel cells, sustainable fuels etc) and their associated powertrains. To achieve a sustainable future for transport across the globe we will need to deploy all technologies and so, to help understand how these might fit together, life-cycle analysis of future powertrain systems and energy will also be included. Powertrain Systems for a Sustainable Future provides a forum for engine, fuels, e-machine, fuel cell and powertrain experts to look closely at developments in powertrain technology required to meet the demands of the net-zero future and global competition in all sectors of the road transportation, off-highway, marine and stationary power industries.

Chemical, Biological and Environmental Engineering - Proceedings of the International Conference on Cbee 2009

Download Chemical, Biological and Environmental Engineering - Proceedings of the International Conference on Cbee 2009 PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814295043
Total Pages : 546 pages
Book Rating : 4.8/5 (142 download)

DOWNLOAD NOW!


Book Synopsis Chemical, Biological and Environmental Engineering - Proceedings of the International Conference on Cbee 2009 by : Li Kai

Download or read book Chemical, Biological and Environmental Engineering - Proceedings of the International Conference on Cbee 2009 written by Li Kai and published by World Scientific. This book was released on 2010 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: Held in Singapore from 9 to 11 October 2009, the 2009 International Conference on Chemical, Biological and Environmental Engineering (CBEE 2009) aims to provide a platform for researchers, engineers, academicians as well as industrial professionals from all over the world to present their research and development activities in chemical, biological and environmental engineering. Conference delegates will also have the opportunity to exchange new ideas and application experiences, establish business or research relations and find global partners for future collaboration. Sample Chapter(s). Chapter 1: The Future of Biopharmaceutics'' Production (92 KB). Contents: Study on Pyrolysis Characteristics of Electronic Waste (J Sun et al.); Application of Noise Mapping on Environmental Management (K-T Tsai et al.); Characteristics and Transport Properties of Two Modified Zero Valent Iron (Y-H Lin et al.); Synthesis of Visible Light Active N-Doped Titania Photocatalyst (C Kusumawardani et al.); CFD-PBM Modeling of Vertical Bubbly Flows (M R Rahimi & H Karimi); Hydrotalcite-Like Synthesis Using Magnesium from Brine Water (E Heraldy et al.); Cement/Activated-Carbon Solidification/Stabilization Treatment of Nitrobenzene (Z Su et al.); Investigation of Fish Species Biodiversity in Haraz River (I Piri et al.); Risk Assessment of Fluoride in Indian Context (V Chaudhary & M Kumar); Light Transmission In Fluidized Bed (E Shahbazali et al.); Drying of Mushroom Using a Solar Tunnel Dryer (M A Basunia et al.); and other papers. Readership: Researchers, engineers, academicians and industrial professionals in related fields of chemical, biological and environmental engineering.

Low-temperature Combustion and Autoignition

Download Low-temperature Combustion and Autoignition PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080535658
Total Pages : 823 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Low-temperature Combustion and Autoignition by : M.J. Pilling

Download or read book Low-temperature Combustion and Autoignition written by M.J. Pilling and published by Elsevier. This book was released on 1997-11-27 with total page 823 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion has played a central role in the development of our civilization which it maintains today as its predominant source of energy. The aim of this book is to provide an understanding of both fundamental and applied aspects of low-temperature combustion chemistry and autoignition. The topic is rooted in classical observational science and has grown, through an increasing understanding of the linkage of the phenomenology to coupled chemical reactions, to quite profound advances in the chemical kinetics of both complex and elementary reactions. The driving force has been both the intrinsic interest of an old and intriguing phenomenon and the centrality of its applications to our economic prosperity. The volume provides a coherent view of the subject while, at the same time, each chapter is self-contained.

Greener and Scalable E-fuels for Decarbonization of Transport

Download Greener and Scalable E-fuels for Decarbonization of Transport PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811683441
Total Pages : 424 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Greener and Scalable E-fuels for Decarbonization of Transport by : Avinash Kumar Agarwal

Download or read book Greener and Scalable E-fuels for Decarbonization of Transport written by Avinash Kumar Agarwal and published by Springer Nature. This book was released on 2021-12-10 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights ways of using gaseous and liquid e-fuels like hydrogen (H2), methane (CH4), methanol (CH3OH), DME (CH3-O-CH3), Ammonia (NH3), synthetic petrol and diesel, etc in existing engines and their effects on tailpipe emissions. The contents also cover calibration and optimization procedure for adaptation of these fuels. the volume also discusses the economical aspect of these fuels. Chapters include recent results and are focused on current trends of automotive sector. This book will be of interest to those in academia and industry involved in fuels, IC engines, engine instrumentation, and environmental research.

Detailed Characterization of Conventional and Low Temperature Dual Fuel Combustion in Compression Ignition Engines

Download Detailed Characterization of Conventional and Low Temperature Dual Fuel Combustion in Compression Ignition Engines PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (852 download)

DOWNLOAD NOW!


Book Synopsis Detailed Characterization of Conventional and Low Temperature Dual Fuel Combustion in Compression Ignition Engines by :

Download or read book Detailed Characterization of Conventional and Low Temperature Dual Fuel Combustion in Compression Ignition Engines written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this study is to assess conventional and low temperature dual fuel combustion in light- and heavy-duty multi-cylinder compression ignition engines in terms of combustion characterization, performance, and emissions. First, a light-duty compression ignition engine is converted to a dual fuel engine and instrumented for in-cylinder pressure measurements. The primary fuels, methane and propane, are each introduced into the system by means of fumigation before the turbocharger, ensuring the air-fuel composition is well-mixed. Experiments are performed at 2.5, 5, 7.5, and 10 bar BMEP at an engine speed of 1800 RPM. Heat release analyses reveal that the ignition delay and subsequent combustion processes are dependent on the primary fuel type and concentration, pilot quantity, and loading condition. At low load, diesel-ignited propane yields longer ignition delay periods than diesel-ignited methane, while at high load the reactivity of propane is more pronounced, leading to shorter ignition delays. At high load (BMEP = 10 bar), the rapid heat release associated with diesel-ignited propane appears to occur even before pilot injection, possibly indicating auto-ignition of the propane-air mixture. Next, a modern, heavy-duty compression ignition engine is commissioned with an open architecture controller and instrumented for in-cylinder pressure measurements. Initial diesel-ignited propane dual fuel experiments (fumigated before the turbocharger) at 1500 RPM reveal that the maximum percent energy substitution (PES) of propane is limited to 86, 60, 33, and 25 percent at 5, 10, 15, and 20 bar BMEP, respectively. Fueling strategy, injection strategy, exhaust gas recirculation (EGR) rate, and intake boost pressure are varied in order to maximize the PES of propane at 10 bar BMEP, which increases from 60 PES to 80 PES of propane. Finally, diesel-ignited propane dual fuel low temperature combustion (LTC) is implemented using early injection timings (50 DBTDC) at 5 bar BMEP. A sweep of injection timings from 10 DBTDC to 50 DBTDC reveals the transition from conventional to low temperature dual fuel combustion, indicated by ultra-low NOx̳ and smoke emissions. Optimization of the dual fuel LTC concept yields less than 0.02 g/kW-hr NOx̳ and 0.06 FSN smoke at 93 PES of propane.

HCCI and CAI Engines for the Automotive Industry

Download HCCI and CAI Engines for the Automotive Industry PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 :
Total Pages : 562 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis HCCI and CAI Engines for the Automotive Industry by : Hua Zhao

Download or read book HCCI and CAI Engines for the Automotive Industry written by Hua Zhao and published by CRC Press. This book was released on 2007-09-10 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogeneous charge compression ignition (HCCI)/controlled auto-ignition (CAI) has emerged as one of the most promising engine technologies with the potential to combine fuel efficiency and improved emissions performance, offering reduced nitrous oxides and particulate matter alongside efficiency comparable with modern diesel engines. Despite the considerable advantages, its operational range is rather limited and controlling the combustion (timing of ignition and rate of energy release) is still an area of on-going research. Commercial applications are, however, close to reality. HCCI a.

A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

Download A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (873 download)

DOWNLOAD NOW!


Book Synopsis A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines by :

Download or read book A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were; Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines; Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions; and Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

Second Law Analysis of Dual Fuel Low Temperature Combustion in a Single Cylinder Research Engine

Download Second Law Analysis of Dual Fuel Low Temperature Combustion in a Single Cylinder Research Engine PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 83 pages
Book Rating : 4.:/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Second Law Analysis of Dual Fuel Low Temperature Combustion in a Single Cylinder Research Engine by : Hamidreza Mahabadipour

Download or read book Second Law Analysis of Dual Fuel Low Temperature Combustion in a Single Cylinder Research Engine written by Hamidreza Mahabadipour and published by . This book was released on 2017 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed second law analysis of dual fuel LTC is not yet available in the open literature even though dual fuel low temperature combustion (LTC) has been studied before. To address this gap, a previously validated, closed-cycle, multi-zone, simulation of diesel-natural gas dual fuel LTC was used to perform a second law analysis. In the current study, a 2.4-liter single-cylinder research engine operating at a nominal load of 6 bar BMEP and 1700 rpm was used. Zone-wise thermodynamic irreversibilities as well as total cumulative entropy generated and lost available work over the closed cycle were quantified. Subsequently, two convenient second-law parameters were defined: (1) the “lost available indicated mean effective pressure” (LAIMEP), which can be interpreted as an engine-size-normalized measure of available work that is lost due to thermodynamic irreversibilities (analogous to the relationship between indicated mean effective pressure and indicated work); (2) fuel conversion irreversibility (FCI), which is defined as the ratio of lost available work to total fuel chemical energy input. Finally, parametric studies were performed to quantify the effects of diesel start of injection, intake manifold temperature, and intake boost pressure on LAIMEP and FCI. The results show that significant entropy generation occurred in the flame zone (52-61 percent) and the burned zone (31-39 percent) while packets account for less than 6 percent of the overall irreversibilities. Parametric studies showed LAIMEPs in the range of 645-768 kPa and FCIs in the range of 32.8-39.2 percent at different engine operating conditions. Although the present study focused on dual fuel LTC, the conceptual definitions of LAIMEP and FCI are generally applicable for comparing the thermodynamic irreversibilities of IC engines of any size and operating on any combustion strategy.

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles

Download Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309159474
Total Pages : 251 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles by : National Research Council

Download or read book Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2010-07-30 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.

Engines and Fuels for Future Transport

Download Engines and Fuels for Future Transport PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 981168717X
Total Pages : 403 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Engines and Fuels for Future Transport by : Gautam Kalghatgi

Download or read book Engines and Fuels for Future Transport written by Gautam Kalghatgi and published by Springer Nature. This book was released on 2021-12-13 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on clean transport and mobility essential to the modern world. It discusses internal combustion engines (ICEs) and alternatives like battery electric vehicles (BEVs) which are growing fast. Alternatives to ICEs start from a very low base and face formidable environmental, material availability, and economic challenges to unlimited and rapid growth. Hence ICEs will continue to be the main power source for transport for decades to come and have to be continuously improved to improve transport sustainability. The book highlights the need to assess proposed changes in the existing transport system on a life cycle basis. The volume includes chapters discussing the challenges faced by ICEs as well as chapters on novel fuels and fuel/ engine interactions which help in this quest to improve the efficiency of ICE and reduce exhaust pollutants. This book will be of interest to those in academia and industry alike.

Exploration of Combustion Strategies for High-efficiency, Extreme-compression Engines

Download Exploration of Combustion Strategies for High-efficiency, Extreme-compression Engines PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (712 download)

DOWNLOAD NOW!


Book Synopsis Exploration of Combustion Strategies for High-efficiency, Extreme-compression Engines by : Mr. Matthew Neil Svrcek

Download or read book Exploration of Combustion Strategies for High-efficiency, Extreme-compression Engines written by Mr. Matthew Neil Svrcek and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasing the compression ratio of an internal combustion engine to 100:1 or greater could potentially enable efficiencies greater than 60%. Understanding and managing the combustion process is a critical component to achieving this in practice. This thesis explores strategies for combustion at extreme compression ratios. First, the setup of a free-piston device capable of operating at 100:1 compression ratio is described. Initial performance results are reported for air-only experiments. Diesel-style combustion was the first approach taken, as it provides facile ignition phasing. Results are reported from initial lean Diesel combustion experiments at compression ratios ranging from 30 to 100:1. Indicated efficiency peaked at 60% for these experiments. To further understand Diesel-style combustion at extreme compression ratios, a study of Diesel sprays in the extreme compression apparatus was performed. The setup of a combined schlieren and direct luminosity imaging system with full-bore optical access is described. Spray penetration, dispersion, liquid length, and ignition delay are reported for combusting and non-combusting sprays. Compression ratios for these experiments ranged from 30 to 100:1. Spray behavior followed expected trends as a function of primary variables such as gas density. However, rapidly varying gas density from the free-piston profile impacts the spray penetration. Furthermore, at the highest compression ratios in-cylinder fluid motion dramatically affects the spray behavior, enabled by the low ratio of fuel to gas density. Systems added to the extreme compression apparatus to measure gaseous and particulate emissions are described. Emissions measurements from Diesel-style combustion of isooctane at 35:1 compression ratio are reported, to provide a reference case at conditions similar to conventional engines. Emissions were similar to those from production Diesel engines, with the exception that soot, HC, and CO increased more rapidly with equivalence ratio in the present study. Results from experiments with Diesel combustion up to 100:1 compression ratio are also reported. The combustion efficiency was 99% up to 100:1 compression ratio, and HC, CO and soot emissions were low. Emissions of NOx were 5 times higher at 100:1 than at 35:1, and would require aftertreatment. Stoichiometric, premixed-charge combustion enables the use of a three-way catalyst and produces low soot levels. Using this approach at extreme compression ratios requires delaying autoignition until the minimum volume is reached. Options for control of autoignition are discussed, and gas cooling is identified as the most effective. Pre-refrigeration, intercooling, and evaporation of a liquid are modeled and shown to effectively achieve the desired ignition timing at 100:1 compression ratio, without impacting the overall engine efficiency. Experimental results are reported for premixed methane-air combustion with intercooling control of autoignition, for 0.96 to 1.04 equivalence ratio and 35 to 90:1 effective compression ratio. The gas cooling requirement for autoignition control was higher than predicted by the models, but still within practical reach. The indicated efficiency peaked at 57%. Emissions levels from these experiments were similar to stoichiometric spark-ignited natural gas engines reported in the literature, and indicate that a three-way catalyst could be successfully used even at extreme compression ratios. Results are also reported for water injection control of autoignition. Autoignition was successfully controlled up to 60:1 effective compression ratio, but the mass of water required was an order of magnitude higher than predicted. This is shown to result from practical limitations of the current water injector setup.