Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Estimation Of Random Fields From Network Observations
Download Estimation Of Random Fields From Network Observations full books in PDF, epub, and Kindle. Read online Estimation Of Random Fields From Network Observations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Estimation of Random Fields from Network Observations by : André François Cabannes
Download or read book Estimation of Random Fields from Network Observations written by André François Cabannes and published by . This book was released on 1979 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Random Fields on a Network by : Xavier Guyon
Download or read book Random Fields on a Network written by Xavier Guyon and published by Springer Science & Business Media. This book was released on 1995-06-23 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of spatial models over lattices, or random fields as they are known, has developed significantly over recent years. This book provides a graduate-level introduction to the subject which assumes only a basic knowledge of probability and statistics, finite Markov chains, and the spectral theory of second-order processes. A particular strength of this book is its emphasis on examples - both to motivate the theory which is being developed, and to demonstrate the applications which range from statistical mechanics to image analysis and from statistics to stochastic algorithms.
Book Synopsis Scientific and Technical Aerospace Reports by :
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Random Field Models in Earth Sciences by : George Christakos
Download or read book Random Field Models in Earth Sciences written by George Christakos and published by Elsevier. This book was released on 2013-10-22 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about modeling as a prinicipal component of scientific investigations. In general terms, modeling is the funamental process of combining intellectual creativity with physical knowledge and mathematical techniques in order to learn the properties of the mechanisms underlying a physical phenomenon and make predictions. The book focuses on a specific class of models, namely, random field models and certain of their physical applications in the context of a stochastic data analysis and processing research program. The term application is considered here in the sense wherein the mathematical random field model is shaping, but is also being shaped by, its objects.This book explores the application of random field models and stochastic data processing to problems in hydrogeology, geostatistics, climate modeling, and oil reservoir engineering, among others Researchers in the geosciences who work with models of natural processes will find discussion of; - Spatiotemporal random fields - Space transformation - Multidimensional estimation - Simulation - Sampling design - Stochastic partial differential equations
Download or read book Energy Research Abstracts written by and published by . This book was released on 1979 with total page 806 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Spectral Analysis of Random Fields with Random Sampling by : I-Shang Jackson Chow
Download or read book Spectral Analysis of Random Fields with Random Sampling written by I-Shang Jackson Chow and published by . This book was released on 1992 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Data Assimilation and Control: Theory and Applications in Life Sciences by : Axel Hutt
Download or read book Data Assimilation and Control: Theory and Applications in Life Sciences written by Axel Hutt and published by Frontiers Media SA. This book was released on 2019-08-16 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: The understanding of complex systems is a key element to predict and control the system’s dynamics. To gain deeper insights into the underlying actions of complex systems today, more and more data of diverse types are analyzed that mirror the systems dynamics, whereas system models are still hard to derive. Data assimilation merges both data and model to an optimal description of complex systems’ dynamics. The present eBook brings together both recent theoretical work in data assimilation and control and demonstrates applications in diverse research fields.
Book Synopsis Selected Water Resources Abstracts by :
Download or read book Selected Water Resources Abstracts written by and published by . This book was released on 1990 with total page 972 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Network Models for Data Science by : Alan Julian Izenman
Download or read book Network Models for Data Science written by Alan Julian Izenman and published by Cambridge University Press. This book was released on 2023-01-05 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text on the theory and applications of network science is aimed at beginning graduate students in statistics, data science, computer science, machine learning, and mathematics, as well as advanced students in business, computational biology, physics, social science, and engineering working with large, complex relational data sets. It provides an exciting array of analysis tools, including probability models, graph theory, and computational algorithms, exposing students to ways of thinking about types of data that are different from typical statistical data. Concepts are demonstrated in the context of real applications, such as relationships between financial institutions, between genes or proteins, between neurons in the brain, and between terrorist groups. Methods and models described in detail include random graph models, percolation processes, methods for sampling from huge networks, network partitioning, and community detection. In addition to static networks the book introduces dynamic networks such as epidemics, where time is an important component.
Book Synopsis Random Fields for Spatial Data Modeling by : Dionissios T. Hristopulos
Download or read book Random Fields for Spatial Data Modeling written by Dionissios T. Hristopulos and published by Springer Nature. This book was released on 2020-02-17 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional integral representations, perturbation and variational methods). The book also explores links between random fields, Gaussian processes and neural networks used in machine learning. Connections with applied mathematics are highlighted by means of models based on stochastic partial differential equations. An interlude on autoregressive time series provides useful lower-dimensional analogies and a connection with the classical linear harmonic oscillator. Other chapters focus on non-Gaussian random fields and stochastic simulation methods. The book also presents results based on the author’s research on Spartan random fields that were inspired by statistical field theories originating in physics. The equivalence of the one-dimensional Spartan random field model with the classical, linear, damped harmonic oscillator driven by white noise is highlighted. Ideas with potentially significant computational gains for the processing of big spatial data are presented and discussed. The final chapter concludes with a description of the Karhunen-Loève expansion of the Spartan model. The book will appeal to engineers, physicists, and geoscientists whose research involves spatial models or spatial data analysis. Anyone with background in probability and statistics can read at least parts of the book. Some chapters will be easier to understand by readers familiar with differential equations and Fourier transforms.
Book Synopsis Data Mining Techniques in Sensor Networks by : Annalisa Appice
Download or read book Data Mining Techniques in Sensor Networks written by Annalisa Appice and published by Springer Science & Business Media. This book was released on 2013-09-12 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sensor networks comprise of a number of sensors installed across a spatially distributed network, which gather information and periodically feed a central server with the measured data. The server monitors the data, issues possible alarms and computes fast aggregates. As data analysis requests may concern both present and past data, the server is forced to store the entire stream. But the limited storage capacity of a server may reduce the amount of data stored on the disk. One solution is to compute summaries of the data as it arrives, and to use these summaries to interpolate the real data. This work introduces a recently defined spatio-temporal pattern, called trend cluster, to summarize, interpolate and identify anomalies in a sensor network. As an example, the application of trend cluster discovery to monitor the efficiency of photovoltaic power plants is discussed. The work closes with remarks on new possibilities for surveillance enabled by recent developments in sensing technology.
Book Synopsis Collecting Spatial Data by : Werner G. Müller
Download or read book Collecting Spatial Data written by Werner G. Müller and published by Springer Science & Business Media. This book was released on 2007-08-17 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is concerned with the statistical theory for locating spatial sensors. It bridges the gap between spatial statistics and optimum design theory. After introductions to those two fields the topics of exploratory designs and designs for spatial trend and variogram estimation are treated. Special attention is devoted to describing new methodologies to cope with the problem of correlated observations.
Book Synopsis Modern Methodology and Applications in Spatial-Temporal Modeling by : Gareth William Peters
Download or read book Modern Methodology and Applications in Spatial-Temporal Modeling written by Gareth William Peters and published by Springer. This book was released on 2016-01-08 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant influence in machine learning disciplines. The second chapter takes up non-parametric statistical methods for spatial field reconstruction and exceedance probability estimation based on Gaussian process-based models in the context of wireless sensor network data. The third chapter presents signal-processing methods applied to acoustic mood analysis based on music signal analysis. The fourth chapter covers models that are applicable to time series modeling in the domain of speech and language processing. This includes aspects of factor analysis, independent component analysis in an unsupervised learning setting. The chapter moves on to include more advanced topics on generalized latent variable topic models based on hierarchical Dirichlet processes which recently have been developed in non-parametric Bayesian literature. The final chapter discusses aspects of dependence modeling, primarily focusing on the role of extreme tail-dependence modeling, copulas, and their role in wireless communications system models.
Book Synopsis Wireless Sensor Networks by : Ananthram Swami
Download or read book Wireless Sensor Networks written by Ananthram Swami and published by John Wiley & Sons. This book was released on 2007-10-24 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: A wireless sensor network (WSN) uses a number of autonomous devices to cooperatively monitor physical or environmental conditions via a wireless network. Since its military beginnings as a means of battlefield surveillance, practical use of this technology has extended to a range of civilian applications including environmental monitoring, natural disaster prediction and relief, health monitoring and fire detection. Technological advancements, coupled with lowering costs, suggest that wireless sensor networks will have a significant impact on 21st century life. The design of wireless sensor networks requires consideration for several disciplines such as distributed signal processing, communications and cross-layer design. Wireless Sensor Networks: Signal Processing and Communications focuses on the theoretical aspects of wireless sensor networks and offers readers signal processing and communication perspectives on the design of large-scale networks. It explains state-of-the-art design theories and techniques to readers and places emphasis on the fundamental properties of large-scale sensor networks. Wireless Sensor Networks: Signal Processing and Communications : Approaches WSNs from a new angle – distributed signal processing, communication algorithms and novel cross-layer design paradigms. Applies ideas and illustrations from classical theory to an emerging field of WSN applications. Presents important analytical tools for use in the design of application-specific WSNs. Wireless Sensor Networks will be of use to signal processing and communications researchers and practitioners in applying classical theory to network design. It identifies research directions for senior undergraduate and graduate students and offers a rich bibliography for further reading and investigation.
Book Synopsis Statistical and Machine Learning Approaches for Network Analysis by : Matthias Dehmer
Download or read book Statistical and Machine Learning Approaches for Network Analysis written by Matthias Dehmer and published by John Wiley & Sons. This book was released on 2012-06-26 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internationally renowned researchers in the field of interdisciplinary network theory, the book presents current and classical methods to analyze networks statistically. Methods from machine learning, data mining, and information theory are strongly emphasized throughout. Real data sets are used to showcase the discussed methods and topics, which include: A survey of computational approaches to reconstruct and partition biological networks An introduction to complex networks—measures, statistical properties, and models Modeling for evolving biological networks The structure of an evolving random bipartite graph Density-based enumeration in structured data Hyponym extraction employing a weighted graph kernel Statistical and Machine Learning Approaches for Network Analysis is an excellent supplemental text for graduate-level, cross-disciplinary courses in applied discrete mathematics, bioinformatics, pattern recognition, and computer science. The book is also a valuable reference for researchers and practitioners in the fields of applied discrete mathematics, machine learning, data mining, and biostatistics.
Book Synopsis Computational Network Analysis with R by : Matthias Dehmer
Download or read book Computational Network Analysis with R written by Matthias Dehmer and published by John Wiley & Sons. This book was released on 2016-07-22 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new title in the well-established "Quantitative Network Biology" series includes innovative and existing methods for analyzing network data in such areas as network biology and chemoinformatics. With its easy-to-follow introduction to the theoretical background and application-oriented chapters, the book demonstrates that R is a powerful language for statistically analyzing networks and for solving such large-scale phenomena as network sampling and bootstrapping. Written by editors and authors with an excellent track record in the field, this is the ultimate reference for R in Network Analysis.
Book Synopsis Clinical Research Informatics by : Rachel Richesson
Download or read book Clinical Research Informatics written by Rachel Richesson and published by Springer Science & Business Media. This book was released on 2012-02-10 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of the book is to provide an overview of clinical research (types), activities, and areas where informatics and IT could fit into various activities and business practices. This book will introduce and apply informatics concepts only as they have particular relevance to clinical research settings.