Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Earth Sciences And Mathematics
Download Earth Sciences And Mathematics full books in PDF, epub, and Kindle. Read online Earth Sciences And Mathematics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Mathematics for Earth Science and Geography by : Cyril Fleurant
Download or read book Mathematics for Earth Science and Geography written by Cyril Fleurant and published by Springer. This book was released on 2018-09-19 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook presents a unique comprehensive overview on Mathematics in Earth Sciences and Geography. It deals with fundamental theoretical and applied mathematics, needed by bachelor students in a wide range of subjects. The book is illustrated with many examples and over a hundred practical exercises, with solutions included in the book. In addition, this textbook highlights numerical resources by using two free software packages (R and Xcas) and introducing their use.
Book Synopsis Mathematical Methods in the Earth and Environmental Sciences by : Adrian Burd
Download or read book Mathematical Methods in the Earth and Environmental Sciences written by Adrian Burd and published by Cambridge University Press. This book was released on 2019-04-18 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the mathematical methods essential for understanding processes in the Earth and environmental sciences.
Book Synopsis Applied Mathematics for Earth Scientists by : Tsuneji Rikitake
Download or read book Applied Mathematics for Earth Scientists written by Tsuneji Rikitake and published by Springer. This book was released on 1987-04-30 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introductory Mathematics for Earth Scientists by : Xin-She Yang
Download or read book Introductory Mathematics for Earth Scientists written by Xin-She Yang and published by Dunedin Academic Press. This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Any quantitative work in earth sciences requires mathematical analysis. Many mathematical methods are essential to the modeling and analysis of the geological, geophysical, and environmental processes widely studied in earth sciences. This book provides an introduction to the fundamental mathematics that all earth scientists need. Assuming nor more than a standard secondary school level as its starting point, the book is self-contained and provides an essential toolkit of basic mathematics for earth scientists. The topics of earth sciences are vast and multidisciplinary, and consequently the mathematical tools required by its students are diverse and complex. Introductory Mathematics for Earth Scientists strikes a fine balance between coverage and detail. Topics have been selected to provide a concise but comprehensive introductory coverage of all the major and popular mathematical methods. The book offers a 'theorem-free' approach with an emphasis on practicality. With dozens of step-by-step worked examples, the book is especially suitable for non-mathematicians and geoscientists. The topics include binomial theorem, index notations, polynomials, sequences and series, trigonometry, spherical trigonometry, complex numbers, vectors and matrices, ordinary differential equations, partial differential equations, Fourier transforms, numerical methods, and geostatistics. Introductory Mathematics for Earth Scientists introduces a wide range of fundamental and widely-used, mathematical methods. This book is ideal for both undergraduate students and postgraduate students. Additionally, it is a helpful reference for more advanced scientists.
Book Synopsis Mathematical Geoscience by : Andrew Fowler
Download or read book Mathematical Geoscience written by Andrew Fowler and published by Springer Science & Business Media. This book was released on 2011-06-21 with total page 895 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Geoscience is an expository textbook which aims to provide a comprehensive overview of a number of different subjects within the Earth and environmental sciences. Uniquely, it treats its subjects from the perspective of mathematical modelling with a level of sophistication that is appropriate to their proper investigation. The material ranges from the introductory level, where it can be used in undergraduate or graduate courses, to research questions of current interest. The chapters end with notes and references, which provide an entry point into the literature, as well as allowing discursive pointers to further research avenues. The introductory chapter provides a condensed synopsis of applied mathematical techniques of analysis, as used in modern applied mathematical modelling. There follows a succession of chapters on climate, ocean and atmosphere dynamics, rivers, dunes, landscape formation, groundwater flow, mantle convection, magma transport, glaciers and ice sheets, and sub-glacial floods. This book introduces a whole range of important geoscientific topics in one single volume and serves as an entry point for a rapidly expanding area of genuine interdisciplinary research. By addressing the interplay between mathematics and the real world, this book will appeal to graduate students, lecturers and researchers in the fields of applied mathematics, the environmental sciences and engineering.
Book Synopsis Mathematical Modeling of Earth's Dynamical Systems by : Rudy Slingerland
Download or read book Mathematical Modeling of Earth's Dynamical Systems written by Rudy Slingerland and published by Princeton University Press. This book was released on 2011-03-28 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html
Book Synopsis Encyclopedia of Mathematical Geosciences by : B. S. Daya Sagar
Download or read book Encyclopedia of Mathematical Geosciences written by B. S. Daya Sagar and published by Springer Nature. This book was released on 2023-07-13 with total page 1744 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Encyclopedia of Mathematical Geosciences is a complete and authoritative reference work. It provides concise explanation on each term that is related to Mathematical Geosciences. Over 300 international scientists, each expert in their specialties, have written around 350 separate articles on different topics of mathematical geosciences including contributions on Artificial Intelligence, Big Data, Compositional Data Analysis, Geomathematics, Geostatistics, Geographical Information Science, Mathematical Morphology, Mathematical Petrology, Multifractals, Multiple Point Statistics, Spatial Data Science, Spatial Statistics, and Stochastic Process Modeling. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and author indices are comprehensive and extensive.
Book Synopsis Spherical Functions of Mathematical Geosciences by : Willi Freeden
Download or read book Spherical Functions of Mathematical Geosciences written by Willi Freeden and published by Springer Nature. This book was released on 2022 with total page 729 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an enlarged second edition of a monograph published in the Springer AGEM2-Series, 2009. It presents, in a consistent and unified overview, a setup of the theory of spherical functions of mathematical (geo-)sciences. The content shows a twofold transition: First, the natural transition from scalar to vectorial and tensorial theory of spherical harmonics is given in a coordinate-free context, based on variants of the addition theorem, Funk-Hecke formulas, and Helmholtz as well as Hardy-Hodge decompositions. Second, the canonical transition from spherical harmonics via zonal (kernel) functions to the Dirac kernel is given in close orientation to an uncertainty principle classifying the space/frequency (momentum) behavior of the functions for purposes of data analysis and (geo-)application. The whole palette of spherical functions is collected in a well-structured form for modeling and simulating the phenomena and processes occurring in the Earth's system. The result is a work which, while reflecting the present state of knowledge in a time-related manner, claims to be of largely timeless significance in (geo-)mathematical research and teaching.
Book Synopsis Handbook of Mathematical Geosciences by : B.S. Daya Sagar
Download or read book Handbook of Mathematical Geosciences written by B.S. Daya Sagar and published by Springer. This book was released on 2018-06-25 with total page 911 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.
Book Synopsis Mathematical Geosciences by : Joseph L. Awange
Download or read book Mathematical Geosciences written by Joseph L. Awange and published by Springer. This book was released on 2018-01-29 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book showcases powerful new hybrid methods that combine numerical and symbolic algorithms. Hybrid algorithm research is currently one of the most promising directions in the context of geosciences mathematics and computer mathematics in general. One important topic addressed here with a broad range of applications is the solution of multivariate polynomial systems by means of resultants and Groebner bases. But that’s barely the beginning, as the authors proceed to discuss genetic algorithms, integer programming, symbolic regression, parallel computing, and many other topics. The book is strictly goal-oriented, focusing on the solution of fundamental problems in the geosciences, such as positioning and point cloud problems. As such, at no point does it discuss purely theoretical mathematics. "The book delivers hybrid symbolic-numeric solutions, which are a large and growing area at the boundary of mathematics and computer science." Dr. Daniel Li chtbau
Book Synopsis Introduction to Applied Mathematics for Environmental Science by : David F. Parkhurst
Download or read book Introduction to Applied Mathematics for Environmental Science written by David F. Parkhurst and published by Springer Science & Business Media. This book was released on 2007-12-06 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book teaches mathematical structures and how they can be applied in environmental science. Each chapter presents story problems with an emphasis on derivation. For each of these, the discussion follows the pattern of first presenting an example of a type of structure as applied to environmental science. The definition of the structure is presented, followed by additional examples using MATLAB, and analytic methods of solving and learning from the structure.
Book Synopsis Multiple-point Geostatistics by : Professor Gregoire Mariethoz
Download or read book Multiple-point Geostatistics written by Professor Gregoire Mariethoz and published by John Wiley & Sons. This book was released on 2014-10-16 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to multiple-point geostatistics, where spatial continuity is described using training images. Multiple-point geostatistics aims at bridging the gap between physical modelling/realism and spatio-temporal stochastic modelling. The book provides an overview of this new field in three parts. Part I presents a conceptual comparison between traditional random function theory and stochastic modelling based on training images, where random function theory is not always used. Part II covers in detail various algorithms and methodologies starting from basic building blocks in statistical science and computer science. Concepts such as non-stationary and multi-variate modeling, consistency between data and model, the construction of training images and inverse modelling are treated. Part III covers three example application areas, namely, reservoir modelling, mineral resources modelling and climate model downscaling. This book will be an invaluable reference for students, researchers and practitioners of all areas of the Earth Sciences where forecasting based on spatio-temporal data is performed.
Book Synopsis Continuum Mechanics in the Earth Sciences by : William I. Newman
Download or read book Continuum Mechanics in the Earth Sciences written by William I. Newman and published by Cambridge University Press. This book was released on 2012-03-15 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuum mechanics underlies many geological and geophysical phenomena, from earthquakes and faults to the fluid dynamics of the Earth. This interdisciplinary book provides geoscientists, physicists and applied mathematicians with a class-tested, accessible overview of continuum mechanics. Starting from thermodynamic principles and geometrical insights, the book surveys solid, fluid and gas dynamics. In later review chapters, it explores new aspects of the field emerging from nonlinearity and dynamical complexity and provides a brief introduction to computational modeling. Simple, yet rigorous, derivations are used to review the essential mathematics. The author emphasizes the full three-dimensional geometries of real-world examples, enabling students to apply this in deconstructing solid earth and planet-related problems. Problem sets and worked examples are provided, making this a practical resource for graduate students in geophysics, planetary physics and geology and a beneficial tool for professional scientists seeking a better understanding of the mathematics and physics within Earth sciences.
Book Synopsis Mechanics in the Earth and Environmental Sciences by : Gerard V. Middleton
Download or read book Mechanics in the Earth and Environmental Sciences written by Gerard V. Middleton and published by Cambridge University Press. This book was released on 1994-08-26 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of the Earth and the environment requires an understanding of the physical processes within and at the surface of the Earth. This book will allow the student to develop a broad working knowledge of mechanics and its application to the earth and environmental sciences. The mathematics are introduced at a level that assumes only an understanding of first-year calculus. The concepts are then developed to allow an understanding of the basic physics for a wide range of natural processes. These are illustrated by examples from many real situations, such as the application of the theory of flow through porous media to the study of groundwater, the viscosity of fluids to the flow of lava, and the theory of stress to the study of faults. The breadth of topics will allow students and professionals to gain an insight into the workings of many aspects of the Earth's systems.
Book Synopsis Random Field Models in Earth Sciences by : George Christakos
Download or read book Random Field Models in Earth Sciences written by George Christakos and published by Elsevier. This book was released on 2013-10-22 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about modeling as a prinicipal component of scientific investigations. In general terms, modeling is the funamental process of combining intellectual creativity with physical knowledge and mathematical techniques in order to learn the properties of the mechanisms underlying a physical phenomenon and make predictions. The book focuses on a specific class of models, namely, random field models and certain of their physical applications in the context of a stochastic data analysis and processing research program. The term application is considered here in the sense wherein the mathematical random field model is shaping, but is also being shaped by, its objects.This book explores the application of random field models and stochastic data processing to problems in hydrogeology, geostatistics, climate modeling, and oil reservoir engineering, among others Researchers in the geosciences who work with models of natural processes will find discussion of; - Spatiotemporal random fields - Space transformation - Multidimensional estimation - Simulation - Sampling design - Stochastic partial differential equations
Book Synopsis Computational Geosciences with Mathematica by : William Haneberg
Download or read book Computational Geosciences with Mathematica written by William Haneberg and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Geosciences with Mathematica is the only book written by a geologist specifically to show geologists and geoscientists how to use Mathematica to formulate and solve problems. It spans a broad range of geologic and mathematical topics, which are drawn from the author's extensive experience in research, consulting, and teaching. The reference and text leads readers step-by-step through geologic applications such as custom graphics programming, data input and output, linear and differential equations, linear and nonlinear regression, Monte Carlo simulation, time series and image analysis, and the visualization and analysis of geologic surfaces. It is packed with actual Mathematica output and includes boxed Computer Notes with tips and exploration suggestions.
Book Synopsis Mathematics and Climate by : Hans Kaper
Download or read book Mathematics and Climate written by Hans Kaper and published by SIAM. This book was released on 2013-10-18 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics and Climate is a timely textbook aimed at students and researchers in mathematics and statistics who are interested in current issues of climate science, as well as at climate scientists who wish to become familiar with qualitative and quantitative methods of mathematics and statistics. The authors emphasize conceptual models that capture important aspects of Earth's climate system and present the mathematical and statistical techniques that can be applied to their analysis. Topics from climate science include the Earth?s energy balance, temperature distribution, ocean circulation patterns such as El Ni?o?Southern Oscillation, ice caps and glaciation periods, the carbon cycle, and the biological pump. Among the mathematical and statistical techniques presented in the text are dynamical systems and bifurcation theory, Fourier analysis, conservation laws, regression analysis, and extreme value theory. The following features make Mathematics and Climate a valuable teaching resource: issues of current interest in climate science and sustainability are used to introduce the student to the methods of mathematics and statistics; the mathematical sophistication increases as the book progresses and topics can thus be selected according to interest and level of knowledge; each chapter ends with a set of exercises that reinforce or enhance the material presented in the chapter and stimulate critical thinking and communication skills; and the book contains an extensive list of references to the literature, a glossary of terms for the nontechnical reader, and a detailed index.