Discrete-Time Recurrent Neural Control

Download Discrete-Time Recurrent Neural Control PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351377434
Total Pages : 292 pages
Book Rating : 4.3/5 (513 download)

DOWNLOAD NOW!


Book Synopsis Discrete-Time Recurrent Neural Control by : Edgar N. Sanchez

Download or read book Discrete-Time Recurrent Neural Control written by Edgar N. Sanchez and published by CRC Press. This book was released on 2018-09-03 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The simulation results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, to establish its properties. The book contains two sections: the first focuses on the analyses of control techniques; the second is dedicated to illustrating results of real-time applications. It also provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme. "This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems. The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market. It is an excellent book after all." — Guanrong Chen, City University of Hong Kong "This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author." — Alma Y. Alanis, University of Guadalajara, Mexico "This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones." — Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India

Discrete-Time Recurrent Neural Control

Download Discrete-Time Recurrent Neural Control PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351377426
Total Pages : 205 pages
Book Rating : 4.3/5 (513 download)

DOWNLOAD NOW!


Book Synopsis Discrete-Time Recurrent Neural Control by : Edgar N. Sanchez

Download or read book Discrete-Time Recurrent Neural Control written by Edgar N. Sanchez and published by CRC Press. This book was released on 2018-09-03 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The simulation results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, to establish its properties. The book contains two sections: the first focuses on the analyses of control techniques; the second is dedicated to illustrating results of real-time applications. It also provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme. "This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems. The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market. It is an excellent book after all." — Guanrong Chen, City University of Hong Kong "This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author." — Alma Y. Alanis, University of Guadalajara, Mexico "This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones." — Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India

Discrete-Time High Order Neural Control

Download Discrete-Time High Order Neural Control PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540782893
Total Pages : 116 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Discrete-Time High Order Neural Control by : Edgar N. Sanchez

Download or read book Discrete-Time High Order Neural Control written by Edgar N. Sanchez and published by Springer. This book was released on 2008-06-24 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.

Discrete-Time Inverse Optimal Control for Nonlinear Systems

Download Discrete-Time Inverse Optimal Control for Nonlinear Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466580887
Total Pages : 268 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Discrete-Time Inverse Optimal Control for Nonlinear Systems by : Edgar N. Sanchez

Download or read book Discrete-Time Inverse Optimal Control for Nonlinear Systems written by Edgar N. Sanchez and published by CRC Press. This book was released on 2017-12-19 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Learn from Simulations and an In-Depth Case Study The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels. The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.

Neural Network Control of Nonlinear Discrete-Time Systems

Download Neural Network Control of Nonlinear Discrete-Time Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420015451
Total Pages : 624 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Control of Nonlinear Discrete-Time Systems by : Jagannathan Sarangapani

Download or read book Neural Network Control of Nonlinear Discrete-Time Systems written by Jagannathan Sarangapani and published by CRC Press. This book was released on 2018-10-03 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent systems are a hallmark of modern feedback control systems. But as these systems mature, we have come to expect higher levels of performance in speed and accuracy in the face of severe nonlinearities, disturbances, unforeseen dynamics, and unstructured uncertainties. Artificial neural networks offer a combination of adaptability, parallel processing, and learning capabilities that outperform other intelligent control methods in more complex systems. Borrowing from Biology Examining neurocontroller design in discrete-time for the first time, Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. At every step, the author derives rigorous stability proofs and presents simulation examples to demonstrate the concepts. Progressive Development After an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware. Neural Network Control of Nonlinear Discrete-Time Systems fosters an understanding of neural network controllers and explains how to build them using detailed derivations, stability analysis, and computer simulations.

Decentralized Neural Control: Application to Robotics

Download Decentralized Neural Control: Application to Robotics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319533126
Total Pages : 121 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Decentralized Neural Control: Application to Robotics by : Ramon Garcia-Hernandez

Download or read book Decentralized Neural Control: Application to Robotics written by Ramon Garcia-Hernandez and published by Springer. This book was released on 2017-02-05 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a decentralized approach for the identification and control of robotics systems. It also presents recent research in decentralized neural control and includes applications to robotics. Decentralized control is free from difficulties due to complexity in design, debugging, data gathering and storage requirements, making it preferable for interconnected systems. Furthermore, as opposed to the centralized approach, it can be implemented with parallel processors. This approach deals with four decentralized control schemes, which are able to identify the robot dynamics. The training of each neural network is performed on-line using an extended Kalman filter (EKF). The first indirect decentralized control scheme applies the discrete-time block control approach, to formulate a nonlinear sliding manifold. The second direct decentralized neural control scheme is based on the backstepping technique, approximated by a high order neural network. The third control scheme applies a decentralized neural inverse optimal control for stabilization. The fourth decentralized neural inverse optimal control is designed for trajectory tracking. This comprehensive work on decentralized control of robot manipulators and mobile robots is intended for professors, students and professionals wanting to understand and apply advanced knowledge in their field of work.

Neural Systems for Control

Download Neural Systems for Control PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080537391
Total Pages : 375 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Neural Systems for Control by : Omid Omidvar

Download or read book Neural Systems for Control written by Omid Omidvar and published by Elsevier. This book was released on 1997-02-24 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis

Applied Artificial Higher Order Neural Networks for Control and Recognition

Download Applied Artificial Higher Order Neural Networks for Control and Recognition PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1522500642
Total Pages : 538 pages
Book Rating : 4.5/5 (225 download)

DOWNLOAD NOW!


Book Synopsis Applied Artificial Higher Order Neural Networks for Control and Recognition by : Zhang, Ming

Download or read book Applied Artificial Higher Order Neural Networks for Control and Recognition written by Zhang, Ming and published by IGI Global. This book was released on 2016-05-05 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, Higher Order Neural Networks (HONNs) have been widely adopted by researchers for applications in control signal generating, pattern recognition, nonlinear recognition, classification, and predition of control and recognition scenarios. Due to the fact that HONNs have been proven to be faster, more accurate, and easier to explain than traditional neural networks, their applications are limitless. Applied Artificial Higher Order Neural Networks for Control and Recognition explores the ways in which higher order neural networks are being integrated specifically for intelligent technology applications. Emphasizing emerging research, practice, and real-world implementation, this timely reference publication is an essential reference source for researchers, IT professionals, and graduate-level computer science and engineering students.

Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications

Download Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030354458
Total Pages : 767 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications by : Oscar Castillo

Download or read book Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications written by Oscar Castillo and published by Springer Nature. This book was released on 2020-02-27 with total page 767 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the latest advances in fuzzy logic, neural networks, and optimization algorithms, as well as their hybrid intelligent combinations, and their applications in the areas such as intelligent control, robotics, pattern recognition, medical diagnosis, time series prediction, and optimization. The topic is highly relevant as most current intelligent systems and devices use some form of intelligent feature to enhance their performance. The book also presents new and advanced models and algorithms of type-2 fuzzy logic and intuitionistic fuzzy systems, which are of great interest to researchers in these areas. Further, it proposes novel, nature-inspired optimization algorithms and innovative neural models. Featuring contributions on theoretical aspects as well as applications, the book appeals to a wide audience.

Neural Control of Renewable Electrical Power Systems

Download Neural Control of Renewable Electrical Power Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030474437
Total Pages : 221 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Neural Control of Renewable Electrical Power Systems by : Edgar N. Sánchez

Download or read book Neural Control of Renewable Electrical Power Systems written by Edgar N. Sánchez and published by Springer Nature. This book was released on 2020-05-09 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents advanced control techniques that use neural networks to deal with grid disturbances in the context renewable energy sources, and to enhance low-voltage ride-through capacity, which is a vital in terms of ensuring that the integration of distributed energy resources into the electrical power network. It presents modern control algorithms based on neural identification for different renewable energy sources, such as wind power, which uses doubly-fed induction generators, solar power, and battery banks for storage. It then discusses the use of the proposed controllers to track doubly-fed induction generator dynamics references: DC voltage, grid power factor, and stator active and reactive power, and the use of simulations to validate their performance. Further, it addresses methods of testing low-voltage ride-through capacity enhancement in the presence of grid disturbances, as well as the experimental validation of the controllers under both normal and abnormal grid conditions. The book then describes how the proposed control schemes are extended to control a grid-connected microgrid, and the use of an IEEE 9-bus system to evaluate their performance and response in the presence of grid disturbances. Lastly, it examines the real-time simulation of the entire system under normal and abnormal conditions using an Opal-RT simulator.

Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications

Download Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1522507892
Total Pages : 1810 pages
Book Rating : 4.5/5 (225 download)

DOWNLOAD NOW!


Book Synopsis Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications by : Management Association, Information Resources

Download or read book Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2016-07-26 with total page 1810 pages. Available in PDF, EPUB and Kindle. Book excerpt: As technology continues to become more sophisticated, mimicking natural processes and phenomena also becomes more of a reality. Continued research in the field of natural computing enables an understanding of the world around us, in addition to opportunities for man-made computing to mirror the natural processes and systems that have existed for centuries. Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications takes an interdisciplinary approach to the topic of natural computing, including emerging technologies being developed for the purpose of simulating natural phenomena, applications across industries, and the future outlook of biologically and nature-inspired technologies. Emphasizing critical research in a comprehensive multi-volume set, this publication is designed for use by IT professionals, researchers, and graduate students studying intelligent computing.

Human-Robot Interaction Control Using Reinforcement Learning

Download Human-Robot Interaction Control Using Reinforcement Learning PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119782740
Total Pages : 290 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Human-Robot Interaction Control Using Reinforcement Learning by : Wen Yu

Download or read book Human-Robot Interaction Control Using Reinforcement Learning written by Wen Yu and published by John Wiley & Sons. This book was released on 2021-10-19 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive exploration of the control schemes of human-robot interactions In Human-Robot Interaction Control Using Reinforcement Learning, an expert team of authors delivers a concise overview of human-robot interaction control schemes and insightful presentations of novel, model-free and reinforcement learning controllers. The book begins with a brief introduction to state-of-the-art human-robot interaction control and reinforcement learning before moving on to describe the typical environment model. The authors also describe some of the most famous identification techniques for parameter estimation. Human-Robot Interaction Control Using Reinforcement Learning offers rigorous mathematical treatments and demonstrations that facilitate the understanding of control schemes and algorithms. It also describes stability and convergence analysis of human-robot interaction control and reinforcement learning based control. The authors also discuss advanced and cutting-edge topics, like inverse and velocity kinematics solutions, H2 neural control, and likely upcoming developments in the field of robotics. Readers will also enjoy: A thorough introduction to model-based human-robot interaction control Comprehensive explorations of model-free human-robot interaction control and human-in-the-loop control using Euler angles Practical discussions of reinforcement learning for robot position and force control, as well as continuous time reinforcement learning for robot force control In-depth examinations of robot control in worst-case uncertainty using reinforcement learning and the control of redundant robots using multi-agent reinforcement learning Perfect for senior undergraduate and graduate students, academic researchers, and industrial practitioners studying and working in the fields of robotics, learning control systems, neural networks, and computational intelligence, Human-Robot Interaction Control Using Reinforcement Learning is also an indispensable resource for students and professionals studying reinforcement learning.

Advances in Neural Networks -- ISNN 2010

Download Advances in Neural Networks -- ISNN 2010 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642132782
Total Pages : 787 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Advances in Neural Networks -- ISNN 2010 by : James Kwok

Download or read book Advances in Neural Networks -- ISNN 2010 written by James Kwok and published by Springer. This book was released on 2010-05-30 with total page 787 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book and its sister volume collect refereed papers presented at the 7th Inter- tional Symposium on Neural Networks (ISNN 2010), held in Shanghai, China, June 6-9, 2010. Building on the success of the previous six successive ISNN symposiums, ISNN has become a well-established series of popular and high-quality conferences on neural computation and its applications. ISNN aims at providing a platform for scientists, researchers, engineers, as well as students to gather together to present and discuss the latest progresses in neural networks, and applications in diverse areas. Nowadays, the field of neural networks has been fostered far beyond the traditional artificial neural networks. This year, ISNN 2010 received 591 submissions from more than 40 countries and regions. Based on rigorous reviews, 170 papers were selected for publication in the proceedings. The papers collected in the proceedings cover a broad spectrum of fields, ranging from neurophysiological experiments, neural modeling to extensions and applications of neural networks. We have organized the papers into two volumes based on their topics. The first volume, entitled “Advances in Neural Networks- ISNN 2010, Part 1,” covers the following topics: neurophysiological foundation, theory and models, learning and inference, neurodynamics. The second volume en- tled “Advance in Neural Networks ISNN 2010, Part 2” covers the following five topics: SVM and kernel methods, vision and image, data mining and text analysis, BCI and brain imaging, and applications.

Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications

Download Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1615207120
Total Pages : 660 pages
Book Rating : 4.6/5 (152 download)

DOWNLOAD NOW!


Book Synopsis Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications by : Zhang, Ming

Download or read book Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications written by Zhang, Ming and published by IGI Global. This book was released on 2010-02-28 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.

Artificial Higher Order Neural Networks for Modeling and Simulation

Download Artificial Higher Order Neural Networks for Modeling and Simulation PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1466621761
Total Pages : 455 pages
Book Rating : 4.4/5 (666 download)

DOWNLOAD NOW!


Book Synopsis Artificial Higher Order Neural Networks for Modeling and Simulation by : Zhang, Ming

Download or read book Artificial Higher Order Neural Networks for Modeling and Simulation written by Zhang, Ming and published by IGI Global. This book was released on 2012-10-31 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks"--Provided by publisher.

Neural and Fuzzy Logic Control of Drives and Power Systems

Download Neural and Fuzzy Logic Control of Drives and Power Systems PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080497365
Total Pages : 413 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Neural and Fuzzy Logic Control of Drives and Power Systems by : Marcian Cirstea

Download or read book Neural and Fuzzy Logic Control of Drives and Power Systems written by Marcian Cirstea and published by Elsevier. This book was released on 2002-07-01 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors guide readers quickly and concisely through the complex topics of neural networks, fuzzy logic, mathematical modelling of electrical machines, power systems control and VHDL design. Unlike the academic monographs that have previously been published on each of these subjects, this book combines them and is based round case studies of systems analysis, control strategies, design, simulation and implementation. The result is a guide to applied control systems design that will appeal equally to students and professional design engineers. The book can also be used as a unique VHDL design aid, based on real-world power engineering applications. Introduces cutting-edge control systems to a wide readership of engineers and students The first book on neuro-fuzzy control systems to take a practical, applications-based approach, backed up with worked examples and case studies Learn to use VHDL in real-world applications

Network and Communication Technology Innovations for Web and IT Advancement

Download Network and Communication Technology Innovations for Web and IT Advancement PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1466621583
Total Pages : 455 pages
Book Rating : 4.4/5 (666 download)

DOWNLOAD NOW!


Book Synopsis Network and Communication Technology Innovations for Web and IT Advancement by : Alkhatib, Ghazi I.

Download or read book Network and Communication Technology Innovations for Web and IT Advancement written by Alkhatib, Ghazi I. and published by IGI Global. This book was released on 2012-10-31 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the steady stream of new web based information technologies being introduced to organizations, the need for network and communication technologies to provide an easy integration of knowledge and information sharing is essential. Network and Communication Technology Innovations for Web and IT Advancement presents studies on trends, developments, and methods on information technology advancements through network and communication technology. This collection brings together integrated approaches for communication technology and usage for web and IT advancements.