Discrete Fractional Calculus

Download Discrete Fractional Calculus PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319255622
Total Pages : 565 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Discrete Fractional Calculus by : Christopher Goodrich

Download or read book Discrete Fractional Calculus written by Christopher Goodrich and published by Springer. This book was released on 2016-02-09 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the subject. Most chapters may be covered or omitted, depending upon the background of the student. For example, the text may be used as a primary reference in an introductory course for difference equations which also includes discrete fractional calculus. Chapters 1—2 provide a basic introduction to the delta calculus including fractional calculus on the set of integers. For courses where students already have background in elementary real analysis, Chapters 1—2 may be covered quickly and readers may then skip to Chapters 6—7 which present some basic results in fractional boundary value problems (FBVPs). Chapters 6—7 in conjunction with some of the current literature listed in the Bibliography can provide a basis for a seminar in the current theory of FBVPs. For a two-semester course, Chapters 1—5 may be covered in depth, providing a very thorough introduction to both the discrete fractional calculus as well as the integer-order calculus.

Discrete Fractional Calculus and Fractional Difference Equations

Download Discrete Fractional Calculus and Fractional Difference Equations PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030927245
Total Pages : 95 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Discrete Fractional Calculus and Fractional Difference Equations by : Rui A. C. Ferreira

Download or read book Discrete Fractional Calculus and Fractional Difference Equations written by Rui A. C. Ferreira and published by Springer Nature. This book was released on 2022-03-14 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: This brief aims to merge the theories of fractional calculus and discrete calculus in a concise but comprehensive manner. It is designed for graduate students, but will be useful for any researcher interested in the theory of discrete fractional calculus and fractional difference equations.

Discrete Fractional Calculus

Download Discrete Fractional Calculus PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814725676
Total Pages : 396 pages
Book Rating : 4.8/5 (147 download)

DOWNLOAD NOW!


Book Synopsis Discrete Fractional Calculus by : Piotr Ostalczyk

Download or read book Discrete Fractional Calculus written by Piotr Ostalczyk and published by World Scientific. This book was released on 2015-11-26 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main subject of the monograph is the fractional calculus in the discrete version. The volume is divided into three main parts. Part one contains a theoretical introduction to the classical and fractional-order discrete calculus where the fundamental role is played by the backward difference and sum. In the second part, selected applications of the discrete fractional calculus in the discrete system control theory are presented. In the discrete system identification, analysis and synthesis, one can consider integer or fractional models based on the fractional-order difference equations. The third part of the book is devoted to digital image processing.

Fractional Differential Equations

Download Fractional Differential Equations PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080531989
Total Pages : 366 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Fractional Differential Equations by : Igor Podlubny

Download or read book Fractional Differential Equations written by Igor Podlubny and published by Elsevier. This book was released on 1998-10-27 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'.This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models.In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research.A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. - A unique survey of many applications of fractional calculus - Presents basic theory - Includes a unified presentation of selected classical results, which are important for applications - Provides many examples - Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory - The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches - Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives

The Analysis of Fractional Differential Equations

Download The Analysis of Fractional Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642145744
Total Pages : 251 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis The Analysis of Fractional Differential Equations by : Kai Diethelm

Download or read book The Analysis of Fractional Differential Equations written by Kai Diethelm and published by Springer. This book was released on 2010-08-18 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.

Basic Theory Of Fractional Differential Equations (Second Edition)

Download Basic Theory Of Fractional Differential Equations (Second Edition) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813148187
Total Pages : 380 pages
Book Rating : 4.8/5 (131 download)

DOWNLOAD NOW!


Book Synopsis Basic Theory Of Fractional Differential Equations (Second Edition) by : Yong Zhou

Download or read book Basic Theory Of Fractional Differential Equations (Second Edition) written by Yong Zhou and published by World Scientific. This book was released on 2016-10-20 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary and partial differential equations. It provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, the technique of Picard operators, critical point theory and semigroup theory. Based on the research work carried out by the authors and other experts during the past seven years, the contents are very recent and comprehensive.In this edition, two new topics have been added, that is, fractional impulsive differential equations, and fractional partial differential equations including fractional Navier-Stokes equations and fractional diffusion equations.

Difference Equations

Download Difference Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 9780124033306
Total Pages : 418 pages
Book Rating : 4.0/5 (333 download)

DOWNLOAD NOW!


Book Synopsis Difference Equations by : Walter G. Kelley

Download or read book Difference Equations written by Walter G. Kelley and published by Academic Press. This book was released on 2001 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Difference Equations, Second Edition, presents a practical introduction to this important field of solutions for engineering and the physical sciences. Topic coverage includes numerical analysis, numerical methods, differential equations, combinatorics and discrete modeling. A hallmark of this revision is the diverse application to many subfields of mathematics. Phase plane analysis for systems of two linear equations Use of equations of variation to approximate solutions Fundamental matrices and Floquet theory for periodic systems LaSalle invariance theorem Additional applications: secant line method, Bison problem, juvenile-adult population model, probability theory Appendix on the use of Mathematica for analyzing difference equaitons Exponential generating functions Many new examples and exercises

Applications Of Fractional Calculus In Physics

Download Applications Of Fractional Calculus In Physics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814496200
Total Pages : 473 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Applications Of Fractional Calculus In Physics by : Rudolf Hilfer

Download or read book Applications Of Fractional Calculus In Physics written by Rudolf Hilfer and published by World Scientific. This book was released on 2000-03-02 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.

Theory and Numerical Approximations of Fractional Integrals and Derivatives

Download Theory and Numerical Approximations of Fractional Integrals and Derivatives PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611975883
Total Pages : 327 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Theory and Numerical Approximations of Fractional Integrals and Derivatives by : Changpin Li

Download or read book Theory and Numerical Approximations of Fractional Integrals and Derivatives written by Changpin Li and published by SIAM. This book was released on 2019-10-31 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to its ubiquity across a variety of fields in science and engineering, fractional calculus has gained momentum in industry and academia. While a number of books and papers introduce either fractional calculus or numerical approximations, no current literature provides a comprehensive collection of both topics. This monograph introduces fundamental information on fractional calculus, provides a detailed treatment of existing numerical approximations, and presents an inclusive review of fractional calculus in terms of theory and numerical methods and systematically examines almost all existing numerical approximations for fractional integrals and derivatives. The authors consider the relationship between the fractional Laplacian and the Riesz derivative, a key component absent from other related texts, and highlight recent developments, including their own research and results. The core audience spans several fractional communities, including those interested in fractional partial differential equations, the fractional Laplacian, and applied and computational mathematics. Advanced undergraduate and graduate students will find the material suitable as a primary or supplementary resource for their studies.

Advances in Fractional Calculus

Download Advances in Fractional Calculus PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402060424
Total Pages : 550 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Advances in Fractional Calculus by : J. Sabatier

Download or read book Advances in Fractional Calculus written by J. Sabatier and published by Springer Science & Business Media. This book was released on 2007-07-28 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last two decades, fractional (or non integer) differentiation has played a very important role in various fields such as mechanics, electricity, chemistry, biology, economics, control theory and signal and image processing. For example, in the last three fields, some important considerations such as modelling, curve fitting, filtering, pattern recognition, edge detection, identification, stability, controllability, observability and robustness are now linked to long-range dependence phenomena. Similar progress has been made in other fields listed here. The scope of the book is thus to present the state of the art in the study of fractional systems and the application of fractional differentiation. As this volume covers recent applications of fractional calculus, it will be of interest to engineers, scientists, and applied mathematicians.

Dynamic Equations on Time Scales

Download Dynamic Equations on Time Scales PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461202019
Total Pages : 365 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Equations on Time Scales by : Martin Bohner

Download or read book Dynamic Equations on Time Scales written by Martin Bohner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.

Fractional Order Analysis

Download Fractional Order Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119654238
Total Pages : 336 pages
Book Rating : 4.1/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Fractional Order Analysis by : Hemen Dutta

Download or read book Fractional Order Analysis written by Hemen Dutta and published by John Wiley & Sons. This book was released on 2020-08-06 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the new research in the field of fractional order analysis Fractional Order Analysis contains the most recent research findings in fractional order analysis and its applications. The authors—noted experts on the topic—offer an examination of the theory, methods, applications, and the modern tools and techniques in the field of fractional order analysis. The information, tools, and applications presented can help develop mathematical methods and models with better accuracy. Comprehensive in scope, the book covers a range of topics including: new fractional operators, fractional derivatives, fractional differential equations, inequalities for different fractional derivatives and fractional integrals, fractional modeling related to transmission of Malaria, and dynamics of Zika virus with various fractional derivatives, and more. Designed to be an accessible text, several useful, relevant and connected topics can be found in one place, which is crucial for an understanding of the research problems of an applied nature. This book: Contains recent development in fractional calculus Offers a balance of theory, methods, and applications Puts the focus on fractional analysis and its interdisciplinary applications, such as fractional models for biological models Helps make research more relevant to real-life applications Written for researchers, professionals and practitioners, Fractional Order Analysis offers a comprehensive resource to fractional analysis and its many applications as well as information on the newest research.

Fractional Derivatives with Mittag-Leffler Kernel

Download Fractional Derivatives with Mittag-Leffler Kernel PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 303011662X
Total Pages : 339 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Fractional Derivatives with Mittag-Leffler Kernel by : José Francisco Gómez

Download or read book Fractional Derivatives with Mittag-Leffler Kernel written by José Francisco Gómez and published by Springer. This book was released on 2019-02-13 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a timely overview of fractional calculus applications, with a special emphasis on fractional derivatives with Mittag-Leffler kernel. The different contributions, written by applied mathematicians, physicists and engineers, offers a snapshot of recent research in the field, highlighting the current methodological frameworks together with applications in different fields of science and engineering, such as chemistry, mechanics, epidemiology and more. It is intended as a timely guide and source of inspiration for graduate students and researchers in the above-mentioned areas.

New Trends in Fractional Differential Equations with Real-World Applications in Physics

Download New Trends in Fractional Differential Equations with Real-World Applications in Physics PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889663043
Total Pages : 172 pages
Book Rating : 4.8/5 (896 download)

DOWNLOAD NOW!


Book Synopsis New Trends in Fractional Differential Equations with Real-World Applications in Physics by : Jagdev Singh

Download or read book New Trends in Fractional Differential Equations with Real-World Applications in Physics written by Jagdev Singh and published by Frontiers Media SA. This book was released on 2020-12-30 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.

Fractional Calculus in Medical and Health Science

Download Fractional Calculus in Medical and Health Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000081818
Total Pages : 265 pages
Book Rating : 4.0/5 ( download)

DOWNLOAD NOW!


Book Synopsis Fractional Calculus in Medical and Health Science by : Devendra Kumar

Download or read book Fractional Calculus in Medical and Health Science written by Devendra Kumar and published by CRC Press. This book was released on 2020-07-09 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers applications of fractional calculus used for medical and health science. It offers a collection of research articles built into chapters on classical and modern dynamical systems formulated by fractional differential equations describing human diseases and how to control them. The mathematical results included in the book will be helpful to mathematicians and doctors by enabling them to explain real-life problems accurately. The book will also offer case studies of real-life situations with an emphasis on describing the mathematical results and showing how to apply the results to medical and health science, and at the same time highlighting modeling strategies. The book will be useful to graduate level students, educators and researchers interested in mathematics and medical science.

Local Fractional Integral Transforms and Their Applications

Download Local Fractional Integral Transforms and Their Applications PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128040327
Total Pages : 263 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Local Fractional Integral Transforms and Their Applications by : Xiao-Jun Yang

Download or read book Local Fractional Integral Transforms and Their Applications written by Xiao-Jun Yang and published by Academic Press. This book was released on 2015-10-22 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms. - Provides applications of local fractional Fourier Series - Discusses definitions for local fractional Laplace transforms - Explains local fractional Laplace transforms coupled with analytical methods

The Variable-Order Fractional Calculus of Variations

Download The Variable-Order Fractional Calculus of Variations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319940066
Total Pages : 135 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis The Variable-Order Fractional Calculus of Variations by : Ricardo Almeida

Download or read book The Variable-Order Fractional Calculus of Variations written by Ricardo Almeida and published by Springer. This book was released on 2018-06-29 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​The Variable-Order Fractional Calculus of Variations is devoted to the study of fractional operators with variable order and, in particular, variational problems involving variable-order operators. This brief presents a new numerical tool for the solution of differential equations involving Caputo derivatives of fractional variable order. Three Caputo-type fractional operators are considered, and for each one, an approximation formula is obtained in terms of standard (integer-order) derivatives only. Estimations for the error of the approximations are also provided. The contributors consider variational problems that may be subject to one or more constraints, where the functional depends on a combined Caputo derivative of variable fractional order. In particular, they establish necessary optimality conditions of Euler–Lagrange type. As the terminal point in the cost integral is free, as is the terminal state, transversality conditions are also obtained. The Variable-Order Fractional Calculus of Variations is a valuable source of information for researchers in mathematics, physics, engineering, control and optimization; it provides both analytical and numerical methods to deal with variational problems. It is also of interest to academics and postgraduates in these fields, as it solves multiple variational problems subject to one or more constraints in a single brief.