Dirac Operators and Spectral Geometry

Download Dirac Operators and Spectral Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521648629
Total Pages : 227 pages
Book Rating : 4.5/5 (216 download)

DOWNLOAD NOW!


Book Synopsis Dirac Operators and Spectral Geometry by : Giampiero Esposito

Download or read book Dirac Operators and Spectral Geometry written by Giampiero Esposito and published by Cambridge University Press. This book was released on 1998-08-20 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear, concise and up-to-date introduction to the theory of the Dirac operator and its wide range of applications in theoretical physics for graduate students and researchers.

The Dirac Spectrum

Download The Dirac Spectrum PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642015700
Total Pages : 168 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis The Dirac Spectrum by : Nicolas Ginoux

Download or read book The Dirac Spectrum written by Nicolas Ginoux and published by Springer. This book was released on 2009-05-30 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume surveys the spectral properties of the spin Dirac operator. After a brief introduction to spin geometry, it presents the main known estimates for Dirac eigenvalues on compact manifolds with or without boundaries.

Heat Kernels and Dirac Operators

Download Heat Kernels and Dirac Operators PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540200628
Total Pages : 384 pages
Book Rating : 4.2/5 (6 download)

DOWNLOAD NOW!


Book Synopsis Heat Kernels and Dirac Operators by : Nicole Berline

Download or read book Heat Kernels and Dirac Operators written by Nicole Berline and published by Springer Science & Business Media. This book was released on 2003-12-08 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the first edition of this book, simple proofs of the Atiyah-Singer Index Theorem for Dirac operators on compact Riemannian manifolds and its generalizations (due to the authors and J.-M. Bismut) were presented, using an explicit geometric construction of the heat kernel of a generalized Dirac operator; the new edition makes this popular book available to students and researchers in an attractive paperback.

Global Riemannian Geometry: Curvature and Topology

Download Global Riemannian Geometry: Curvature and Topology PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034880553
Total Pages : 96 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Global Riemannian Geometry: Curvature and Topology by : Steen Markvorsen

Download or read book Global Riemannian Geometry: Curvature and Topology written by Steen Markvorsen and published by Birkhäuser. This book was released on 2012-12-06 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a clear exposition of two contemporary topics in modern differential geometry: distance geometric analysis on manifolds, in particular, comparison theory for distance functions in spaces which have well defined bounds on their curvature the application of the Lichnerowicz formula for Dirac operators to the study of Gromov's invariants to measure the K-theoretic size of a Riemannian manifold. It is intended for both graduate students and researchers.

Dirac Operators in Representation Theory

Download Dirac Operators in Representation Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817644938
Total Pages : 205 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Dirac Operators in Representation Theory by : Jing-Song Huang

Download or read book Dirac Operators in Representation Theory written by Jing-Song Huang and published by Springer Science & Business Media. This book was released on 2007-05-27 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. The book is an excellent contribution to the mathematical literature of representation theory, and this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics.

Dirac Operators in Riemannian Geometry

Download Dirac Operators in Riemannian Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821820559
Total Pages : 213 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Dirac Operators in Riemannian Geometry by : Thomas Friedrich

Download or read book Dirac Operators in Riemannian Geometry written by Thomas Friedrich and published by American Mathematical Soc.. This book was released on 2000 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a Riemannian manifold M, the geometry, topology and analysis are interrelated in ways that have become widely explored in modern mathematics. Bounds on the curvature can have significant implications for the topology of the manifold. The eigenvalues of the Laplacian are naturally linked to the geometry of the manifold. For manifolds that admit spin structures, one obtains further information from equations involving Dirac operators and spinor fields. In the case of four-manifolds, for example, one has the remarkable Seiberg-Witten invariants. In this text, Friedrich examines the Dirac operator on Riemannian manifolds, especially its connection with the underlying geometry and topology of the manifold. The presentation includes a review of Clifford algebras, spin groups and the spin representation, as well as a review of spin structures and $\textrm{spin}mathbb{C}$ structures. With this foundation established, the Dirac operator is defined and studied, with special attention to the cases of Hermitian manifolds and symmetric spaces. Then, certain analytic properties are established, including self-adjointness and the Fredholm property. An important link between the geometry and the analysis is provided by estimates for the eigenvalues of the Dirac operator in terms of the scalar curvature and the sectional curvature. Considerations of Killing spinors and solutions of the twistor equation on M lead to results about whether M is an Einstein manifold or conformally equivalent to one. Finally, in an appendix, Friedrich gives a concise introduction to the Seiberg-Witten invariants, which are a powerful tool for the study of four-manifolds. There is also an appendix reviewing principal bundles and connections. This detailed book with elegant proofs is suitable as a text for courses in advanced differential geometry and global analysis, and can serve as an introduction for further study in these areas. This edition is translated from the German edition published by Vieweg Verlag.

The Atiyah-Patodi-Singer Index Theorem

Download The Atiyah-Patodi-Singer Index Theorem PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439864608
Total Pages : 392 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis The Atiyah-Patodi-Singer Index Theorem by : Richard Melrose

Download or read book The Atiyah-Patodi-Singer Index Theorem written by Richard Melrose and published by CRC Press. This book was released on 1993-03-31 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the lecture notes of a graduate course given at MIT, this sophisticated treatment leads to a variety of current research topics and will undoubtedly serve as a guide to further studies.

Operators, Geometry and Quanta

Download Operators, Geometry and Quanta PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400702051
Total Pages : 294 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Operators, Geometry and Quanta by : Dmitri Fursaev

Download or read book Operators, Geometry and Quanta written by Dmitri Fursaev and published by Springer Science & Business Media. This book was released on 2011-06-25 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a detailed and self-contained introduction into the theory of spectral functions, with an emphasis on their applications to quantum field theory. All methods are illustrated with applications to specific physical problems from the forefront of current research, such as finite-temperature field theory, D-branes, quantum solitons and noncommutativity. In the first part of the book, necessary background information on differential geometry and quantization, including less standard material, is collected. The second part of the book contains a detailed description of main spectral functions and methods of their calculation. In the third part, the theory is applied to several examples (D-branes, quantum solitons, anomalies, noncommutativity). This book addresses advanced graduate students and researchers in mathematical physics with basic knowledge of quantum field theory and differential geometry. The aim is to prepare readers to use spectral functions in their own research, in particular in relation to heat kernels and zeta functions.

Asymptotic Formulae in Spectral Geometry

Download Asymptotic Formulae in Spectral Geometry PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1135440743
Total Pages : 315 pages
Book Rating : 4.1/5 (354 download)

DOWNLOAD NOW!


Book Synopsis Asymptotic Formulae in Spectral Geometry by : Peter B. Gilkey

Download or read book Asymptotic Formulae in Spectral Geometry written by Peter B. Gilkey and published by CRC Press. This book was released on 2003-12-17 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: A great deal of progress has been made recently in the field of asymptotic formulas that arise in the theory of Dirac and Laplace type operators. Asymptotic Formulae in Spectral Geometry collects these results and computations into one book. Written by a leading pioneer in the field, it focuses on the functorial and special cases methods of computing asymptotic heat trace and heat content coefficients in the heat equation. It incorporates the work of many authors into the presentation, and includes a complete bibliography that serves as a roadmap to the literature on the subject. Geometers, mathematical physicists, and analysts alike will undoubtedly find this book to be the definitive book on the subject

Spectral Geometry

Download Spectral Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540409580
Total Pages : 284 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Spectral Geometry by : Pierre H. Berard

Download or read book Spectral Geometry written by Pierre H. Berard and published by Springer. This book was released on 2006-11-14 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Elliptic Boundary Problems for Dirac Operators

Download Elliptic Boundary Problems for Dirac Operators PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461203376
Total Pages : 322 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Boundary Problems for Dirac Operators by : Bernhelm Booß-Bavnbek

Download or read book Elliptic Boundary Problems for Dirac Operators written by Bernhelm Booß-Bavnbek and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elliptic boundary problems have enjoyed interest recently, espe cially among C* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.

Spin Geometry

Download Spin Geometry PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400883911
Total Pages : 442 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Spin Geometry by : H. Blaine Lawson

Download or read book Spin Geometry written by H. Blaine Lawson and published by Princeton University Press. This book was released on 2016-06-02 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a systematic and comprehensive presentation of the concepts of a spin manifold, spinor fields, Dirac operators, and A-genera, which, over the last two decades, have come to play a significant role in many areas of modern mathematics. Since the deeper applications of these ideas require various general forms of the Atiyah-Singer Index Theorem, the theorems and their proofs, together with all prerequisite material, are examined here in detail. The exposition is richly embroidered with examples and applications to a wide spectrum of problems in differential geometry, topology, and mathematical physics. The authors consistently use Clifford algebras and their representations in this exposition. Clifford multiplication and Dirac operator identities are even used in place of the standard tensor calculus. This unique approach unifies all the standard elliptic operators in geometry and brings fresh insights into curvature calculations. The fundamental relationships of Clifford modules to such topics as the theory of Lie groups, K-theory, KR-theory, and Bott Periodicity also receive careful consideration. A special feature of this book is the development of the theory of Cl-linear elliptic operators and the associated index theorem, which connects certain subtle spin-corbordism invariants to classical questions in geometry and has led to some of the most profound relations known between the curvature and topology of manifolds.

The Laplacian on a Riemannian Manifold

Download The Laplacian on a Riemannian Manifold PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521468312
Total Pages : 190 pages
Book Rating : 4.4/5 (683 download)

DOWNLOAD NOW!


Book Synopsis The Laplacian on a Riemannian Manifold by : Steven Rosenberg

Download or read book The Laplacian on a Riemannian Manifold written by Steven Rosenberg and published by Cambridge University Press. This book was released on 1997-01-09 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds.

The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator

Download The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461253446
Total Pages : 245 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator by : J.J. Duistermaat

Download or read book The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator written by J.J. Duistermaat and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: When visiting M.I.T. for two weeks in October 1994, Victor Guillemin made me enthusiastic about a problem in symplectic geometry which involved the use of the so-called spin-c Dirac operator. Back in Berkeley, where I had l spent a sabbatical semester , I tried to understand the basic facts about this operator: its definition, the main theorems about it, and their proofs. This book is an outgrowth of the notes in which I worked this out. For me this was a great learning experience because of the many beautiful mathematical structures which are involved. I thank the Editorial Board of Birkhauser, especially Haim Brezis, for sug gesting the publication of these notes as a book. I am also very grateful for the suggestions by the referees, which have led to substantial improvements in the presentation. Finally I would like to express special thanks to Ann Kostant for her help and her prodding me, in her charming way, into the right direction. J.J. Duistermaat Utrecht, October 16, 1995.

Noncommutative Geometry and Particle Physics

Download Noncommutative Geometry and Particle Physics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9401791627
Total Pages : 246 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Noncommutative Geometry and Particle Physics by : Walter D. van Suijlekom

Download or read book Noncommutative Geometry and Particle Physics written by Walter D. van Suijlekom and published by Springer. This book was released on 2014-07-21 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.

Quantum Riemannian Geometry

Download Quantum Riemannian Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030302946
Total Pages : 826 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Quantum Riemannian Geometry by : Edwin J. Beggs

Download or read book Quantum Riemannian Geometry written by Edwin J. Beggs and published by Springer Nature. This book was released on 2020-01-31 with total page 826 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive account of a modern generalisation of differential geometry in which coordinates need not commute. This requires a reinvention of differential geometry that refers only to the coordinate algebra, now possibly noncommutative, rather than to actual points. Such a theory is needed for the geometry of Hopf algebras or quantum groups, which provide key examples, as well as in physics to model quantum gravity effects in the form of quantum spacetime. The mathematical formalism can be applied to any algebra and includes graph geometry and a Lie theory of finite groups. Even the algebra of 2 x 2 matrices turns out to admit a rich moduli of quantum Riemannian geometries. The approach taken is a `bottom up’ one in which the different layers of geometry are built up in succession, starting from differential forms and proceeding up to the notion of a quantum `Levi-Civita’ bimodule connection, geometric Laplacians and, in some cases, Dirac operators. The book also covers elements of Connes’ approach to the subject coming from cyclic cohomology and spectral triples. Other topics include various other cohomology theories, holomorphic structures and noncommutative D-modules. A unique feature of the book is its constructive approach and its wealth of examples drawn from a large body of literature in mathematical physics, now put on a firm algebraic footing. Including exercises with solutions, it can be used as a textbook for advanced courses as well as a reference for researchers.

Spectral Theory and Differential Operators

Download Spectral Theory and Differential Operators PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0198812051
Total Pages : 610 pages
Book Rating : 4.1/5 (988 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory and Differential Operators by : David Eric Edmunds

Download or read book Spectral Theory and Differential Operators written by David Eric Edmunds and published by Oxford University Press. This book was released on 2018 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an updated version of the classic 1987 monograph "Spectral Theory and Differential Operators".The original book was a cutting edge account of the theory of bounded and closed linear operators in Banach and Hilbert spaces relevant to spectral problems involving differential equations. It is accessible to a graduate student as well as meeting the needs of seasoned researchers in mathematics and mathematical physics. This revised edition corrects various errors, and adds extensive notes to the end of each chapter which describe the considerable progress that has been made on the topic in the last 30 years.