Differential Geometry, Part 2

Download Differential Geometry, Part 2 PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821802488
Total Pages : 455 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry, Part 2 by : Shiing-Shen Chern

Download or read book Differential Geometry, Part 2 written by Shiing-Shen Chern and published by American Mathematical Soc.. This book was released on 1975 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains sections on Complex differential geometry, Partial differential equations, Homogeneous spaces, and Relativity.

Introduction to Differential Geometry

Download Introduction to Differential Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3662643405
Total Pages : 426 pages
Book Rating : 4.6/5 (626 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Differential Geometry by : Joel W. Robbin

Download or read book Introduction to Differential Geometry written by Joel W. Robbin and published by Springer Nature. This book was released on 2022-01-12 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Differential Geometry and Mathematical Physics

Download Differential Geometry and Mathematical Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400753454
Total Pages : 766 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Mathematical Physics by : Gerd Rudolph

Download or read book Differential Geometry and Mathematical Physics written by Gerd Rudolph and published by Springer Science & Business Media. This book was released on 2012-11-09 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.

Differential Geometry

Download Differential Geometry PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486318621
Total Pages : 384 pages
Book Rating : 4.4/5 (863 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry by : Erwin Kreyszig

Download or read book Differential Geometry written by Erwin Kreyszig and published by Courier Corporation. This book was released on 2013-04-26 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.

Differential Geometry and Lie Groups

Download Differential Geometry and Lie Groups PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030460401
Total Pages : 777 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Lie Groups by : Jean Gallier

Download or read book Differential Geometry and Lie Groups written by Jean Gallier and published by Springer Nature. This book was released on 2020-08-14 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers an introduction to differential geometry designed for readers interested in modern geometry processing. Working from basic undergraduate prerequisites, the authors develop manifold theory and Lie groups from scratch; fundamental topics in Riemannian geometry follow, culminating in the theory that underpins manifold optimization techniques. Students and professionals working in computer vision, robotics, and machine learning will appreciate this pathway into the mathematical concepts behind many modern applications. Starting with the matrix exponential, the text begins with an introduction to Lie groups and group actions. Manifolds, tangent spaces, and cotangent spaces follow; a chapter on the construction of manifolds from gluing data is particularly relevant to the reconstruction of surfaces from 3D meshes. Vector fields and basic point-set topology bridge into the second part of the book, which focuses on Riemannian geometry. Chapters on Riemannian manifolds encompass Riemannian metrics, geodesics, and curvature. Topics that follow include submersions, curvature on Lie groups, and the Log-Euclidean framework. The final chapter highlights naturally reductive homogeneous manifolds and symmetric spaces, revealing the machinery needed to generalize important optimization techniques to Riemannian manifolds. Exercises are included throughout, along with optional sections that delve into more theoretical topics. Differential Geometry and Lie Groups: A Computational Perspective offers a uniquely accessible perspective on differential geometry for those interested in the theory behind modern computing applications. Equally suited to classroom use or independent study, the text will appeal to students and professionals alike; only a background in calculus and linear algebra is assumed. Readers looking to continue on to more advanced topics will appreciate the authors’ companion volume Differential Geometry and Lie Groups: A Second Course.

Differential Geometry

Download Differential Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319550845
Total Pages : 358 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry by : Loring W. Tu

Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Global Riemannian Geometry

Download Global Riemannian Geometry PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 226 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Global Riemannian Geometry by : Thomas Willmore

Download or read book Global Riemannian Geometry written by Thomas Willmore and published by . This book was released on 1984 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt:

An Introduction to Differential Geometry

Download An Introduction to Differential Geometry PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486282104
Total Pages : 338 pages
Book Rating : 4.4/5 (862 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Differential Geometry by : T. J. Willmore

Download or read book An Introduction to Differential Geometry written by T. J. Willmore and published by Courier Corporation. This book was released on 2013-05-13 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.

Manifolds and Differential Geometry

Download Manifolds and Differential Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821848151
Total Pages : 690 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Manifolds and Differential Geometry by : Jeffrey Marc Lee

Download or read book Manifolds and Differential Geometry written by Jeffrey Marc Lee and published by American Mathematical Soc.. This book was released on 2009 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.

Differential Geometry and Lie Groups

Download Differential Geometry and Lie Groups PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030460479
Total Pages : 627 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Lie Groups by : Jean Gallier

Download or read book Differential Geometry and Lie Groups written by Jean Gallier and published by Springer Nature. This book was released on 2020-08-18 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explores advanced topics in differential geometry, chosen for their particular relevance to modern geometry processing. Analytic and algebraic perspectives augment core topics, with the authors taking care to motivate each new concept. Whether working toward theoretical or applied questions, readers will appreciate this accessible exploration of the mathematical concepts behind many modern applications. Beginning with an in-depth study of tensors and differential forms, the authors go on to explore a selection of topics that showcase these tools. An analytic theme unites the early chapters, which cover distributions, integration on manifolds and Lie groups, spherical harmonics, and operators on Riemannian manifolds. An exploration of bundles follows, from definitions to connections and curvature in vector bundles, culminating in a glimpse of Pontrjagin and Chern classes. The final chapter on Clifford algebras and Clifford groups draws the book to an algebraic conclusion, which can be seen as a generalized viewpoint of the quaternions. Differential Geometry and Lie Groups: A Second Course captures the mathematical theory needed for advanced study in differential geometry with a view to furthering geometry processing capabilities. Suited to classroom use or independent study, the text will appeal to students and professionals alike. A first course in differential geometry is assumed; the authors’ companion volume Differential Geometry and Lie Groups: A Computational Perspective provides the ideal preparation.

Geometrical Methods of Mathematical Physics

Download Geometrical Methods of Mathematical Physics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107268141
Total Pages : 272 pages
Book Rating : 4.1/5 (72 download)

DOWNLOAD NOW!


Book Synopsis Geometrical Methods of Mathematical Physics by : Bernard F. Schutz

Download or read book Geometrical Methods of Mathematical Physics written by Bernard F. Schutz and published by Cambridge University Press. This book was released on 1980-01-28 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.

Differential Geometry of Curves and Surfaces

Download Differential Geometry of Curves and Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817644024
Total Pages : 215 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry of Curves and Surfaces by : Victor Andreevich Toponogov

Download or read book Differential Geometry of Curves and Surfaces written by Victor Andreevich Toponogov and published by Springer Science & Business Media. This book was released on 2006-09-10 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels

Differential Geometry of Complex Vector Bundles

Download Differential Geometry of Complex Vector Bundles PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400858682
Total Pages : 317 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry of Complex Vector Bundles by : Shoshichi Kobayashi

Download or read book Differential Geometry of Complex Vector Bundles written by Shoshichi Kobayashi and published by Princeton University Press. This book was released on 2014-07-14 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Differential Geometry, Lie Groups, and Symmetric Spaces

Download Differential Geometry, Lie Groups, and Symmetric Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821828487
Total Pages : 682 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry, Lie Groups, and Symmetric Spaces by : Sigurdur Helgason

Download or read book Differential Geometry, Lie Groups, and Symmetric Spaces written by Sigurdur Helgason and published by American Mathematical Soc.. This book was released on 2001-06-12 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: A great book ... a necessary item in any mathematical library. --S. S. Chern, University of California A brilliant book: rigorous, tightly organized, and covering a vast amount of good mathematics. --Barrett O'Neill, University of California This is obviously a very valuable and well thought-out book on an important subject. --Andre Weil, Institute for Advanced Study The study of homogeneous spaces provides excellent insights into both differential geometry and Lie groups. In geometry, for instance, general theorems and properties will also hold for homogeneous spaces, and will usually be easier to understand and to prove in this setting. For Lie groups, a significant amount of analysis either begins with or reduces to analysis on homogeneous spaces, frequently on symmetric spaces. For many years and for many mathematicians, Sigurdur Helgason's classic Differential Geometry, Lie Groups, and Symmetric Spaces has been--and continues to be--the standard source for this material. Helgason begins with a concise, self-contained introduction to differential geometry. Next is a careful treatment of the foundations of the theory of Lie groups, presented in a manner that since 1962 has served as a model to a number of subsequent authors. This sets the stage for the introduction and study of symmetric spaces, which form the central part of the book. The text concludes with the classification of symmetric spaces by means of the Killing-Cartan classification of simple Lie algebras over $\mathbb{C}$ and Cartan's classification of simple Lie algebras over $\mathbb{R}$, following a method of Victor Kac. The excellent exposition is supplemented by extensive collections of useful exercises at the end of each chapter. All of the problems have either solutions or substantial hints, found at the back of the book. For this edition, the author has made corrections and added helpful notes and useful references. Sigurdur Helgason was awarded the Steele Prize for Differential Geometry, Lie Groups, and Symmetric Spaces and Groups and Geometric Analysis.

Topics in Differential Geometry

Download Topics in Differential Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821820036
Total Pages : 510 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Topics in Differential Geometry by : Peter W. Michor

Download or read book Topics in Differential Geometry written by Peter W. Michor and published by American Mathematical Soc.. This book was released on 2008 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book treats the fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry. It gives the careful reader working knowledge in a wide range of topics of modern coordinate-free differential geometry in not too many pages. A prerequisite for using this book is a good knowledge of undergraduate analysis and linear algebra."--BOOK JACKET.

A Course in Differential Geometry

Download A Course in Differential Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082182709X
Total Pages : 198 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Course in Differential Geometry by : Thierry Aubin

Download or read book A Course in Differential Geometry written by Thierry Aubin and published by American Mathematical Soc.. This book was released on 2001 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook for second-year graduate students is intended as an introduction to differential geometry with principal emphasis on Riemannian geometry. Chapter I explains basic definitions and gives the proofs of the important theorems of Whitney and Sard. Chapter II deals with vector fields and differential forms. Chapter III addresses integration of vector fields and p-plane fields. Chapter IV develops the notion of connection on a Riemannian manifold considered as a means to define parallel transport on the manifold. The author also discusses related notions of torsion and curvature, and gives a working knowledge of the covariant derivative. Chapter V specializes on Riemannian manifolds by deducing global properties from local properties of curvature, the final goal being to determine the manifold completely. Chapter VI explores some problems in PDEs suggested by the geometry of manifolds. The author is well-known for his significant contributions to the field of geometry and PDEs - particularly for his work on the Yamabe problem - and for his expository accounts on the subject. The text contains many problems and solutions, permitting the reader to apply the theorems and to see concrete developments of the abstract theory.

Elementary Differential Geometry

Download Elementary Differential Geometry PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (114 download)

DOWNLOAD NOW!


Book Synopsis Elementary Differential Geometry by :

Download or read book Elementary Differential Geometry written by and published by . This book was released on 2000 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: