Development of Nanostructured Nickel-Rich Cathode Materials for Fast-Charging Lithium-Ion Batteries and of High-Conductivity Doped Semiconducting Polymers for Energy Applications

Download Development of Nanostructured Nickel-Rich Cathode Materials for Fast-Charging Lithium-Ion Batteries and of High-Conductivity Doped Semiconducting Polymers for Energy Applications PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 258 pages
Book Rating : 4.:/5 (124 download)

DOWNLOAD NOW!


Book Synopsis Development of Nanostructured Nickel-Rich Cathode Materials for Fast-Charging Lithium-Ion Batteries and of High-Conductivity Doped Semiconducting Polymers for Energy Applications by : Victoria Mignon Basile

Download or read book Development of Nanostructured Nickel-Rich Cathode Materials for Fast-Charging Lithium-Ion Batteries and of High-Conductivity Doped Semiconducting Polymers for Energy Applications written by Victoria Mignon Basile and published by . This book was released on 2021 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of new materials for energy applications is necessary to create new solutions to minimize our use of fossil fuels. This dissertation is composed of two separate projects that use different materials to address energy challenges. The first part focuses on nanostructured nickel-rich cathode materials for use in fast-charging lithium-ion batteries. Fast-charging batteries are desired for use in electric vehicles to shorten charging times from hours to minutes, which could help with their larger scale implementation and reduction of fossil fuel use. Fast-charging can be achieved by nanostructuring certain battery materials, which decreases lithium-ion diffusion lengths and can help suppress slow discontinuous, first-order phase transitions, while retaining high capacity. This behavior has been termed pseudocapacitance. While a number of pseudocapacitive anodes have been produced, there are few examples of high-capacity pseudocapacitive cathodes. Here, we studied the nickel-rich cathode materials LiNi0.80Co0.15Al0.05O2 (NCA) and LiNi0.xMn0.yCo0.zO2 (NMCxyz), both of which are high-capacity materials that show suppressed discontinuous phase transitions. Because of this favorable continuous phase transition behavior, we hypothesized that only modest decreases in particle sizes would be needed to develop pseudocapacitive behavior. We used polymer templating with a sol-gel synthesis to synthesize nanoporous NCA and NMC materials with decreased particle sizes. We then studied the effect of the particle size on the electrochemical kinetic properties of the material and cycling behavior at fast-charging rates. The results showed improved (dis)charge kinetics compared to the bulk and identified characteristics of pseudocapacitance. Nanostructured NCA cathodes were also paired with a fast-charging pseudocapacitive anode to demonstrate their potential for commercial full-cell fast-charging devices.The second part of this dissertation studies semiconducting polymers, which have potential applications in organic electronics, such as solar cells and thermoelectrics. These materials are interesting for energy applications because they are flexible, low-cost, and solution-processable. While semiconducting polymers show low conductivity, molecular doping can improve conductivity by adding mobile charge carriers. Here a novel redox-tunable dodecaborane-based dopant was introduced into a semiconducting polymer network and the resulting electronic, structural, and optical properties were studied. Large and strongly-oxidizing dopants were found to dramatically increase conductivity by producing more and higher-mobility charge carriers.

Nanostructured Materials for Next-Generation Energy Storage and Conversion

Download Nanostructured Materials for Next-Generation Energy Storage and Conversion PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3662586754
Total Pages : 472 pages
Book Rating : 4.6/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Nanostructured Materials for Next-Generation Energy Storage and Conversion by : Qiang Zhen

Download or read book Nanostructured Materials for Next-Generation Energy Storage and Conversion written by Qiang Zhen and published by Springer Nature. This book was released on 2019-10-10 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 3 of a 4-volume series is a concise, authoritative and an eminently readable and enjoyable experience related to lithium ion battery design, characterization and usage for portable and stationary power. Although the major focus is on lithium metal oxides or transition metal oxide as alloys, the discussion of fossil fuels is also presented where appropriate. This monograph is written by recognized experts in the field, and is both timely and appropriate as this decade will see application of lithium as an energy carrier, for example in the transportation sector. This Volume focuses on the fundamentals related to batteries using the latest research in the field of battery physics, chemistry, and electrochemistry. The research summarised in this book by leading experts is laid out in an easy-to-understand format to enable the layperson to grasp the essence of the technology, its pitfalls and current challenges in high-power Lithium battery research. After introductory remarks on policy and battery safety, a series of monographs are offered related to fundamentals of lithium batteries, including, theoretical modeling, simulation and experimental techniques used to characterize electrode materials, both at the material composition, and also at the device level. The different properties specific to each component of the batteries are discussed in order to offer tradeoffs between power and energy density, energy cycling, safety and where appropriate end-of-life disposal. Parameters affecting battery performance and cost, longevity using newer metal oxides, different electrolytes are also reviewed in the context of safety concerns and in relation to the solid-electrolyte interface. Separators, membranes, solid-state electrolytes, and electrolyte additives are also reviewed in light of safety, recycling, and high energy endurance issues. The book is intended for a wide audience, such as scientists who are new to the field, practitioners, as well as students in the STEM and STEP fields, as well as students working on batteries. The sections on safety and policy would be of great interest to engineers and technologists who want to obtain a solid grounding in the fundamentals of battery science arising from the interaction of electrochemistry, solid-state materials science, surfaces, and interfaces.

Development of Pseudocapacitive Properties in Nanostructured LiMn2O4 as a Fast Charging Cathode for Lithium Ion Batteries

Download Development of Pseudocapacitive Properties in Nanostructured LiMn2O4 as a Fast Charging Cathode for Lithium Ion Batteries PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 165 pages
Book Rating : 4.:/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Development of Pseudocapacitive Properties in Nanostructured LiMn2O4 as a Fast Charging Cathode for Lithium Ion Batteries by : Benjamin Kalman Lesel

Download or read book Development of Pseudocapacitive Properties in Nanostructured LiMn2O4 as a Fast Charging Cathode for Lithium Ion Batteries written by Benjamin Kalman Lesel and published by . This book was released on 2017 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pseudocapacitive materials provide a high energy density solution to fast charging, long cycle life energy storage. This work explores the pseudocapacitive characteristics and attempts to optimize nanostructured LiMn2O4 for use as a cathode material in fast charging, long cycle lifetime lithium ion batteries. Because slow kinetics in traditional batteries is linked to long lithium ion diffusion lengths through micron sized grains, the key to achieving pseudocapacitance in most materials is through nanostructuring to reduced diffusion distance. One of the most effective methods for producing nanostructures is through nanocrystal/polymer templating, which produces a porous structure with interconnected nanoscale walls capable of intercalating lithium ions at pseudocapactive rates. To make a full pseudocapacitive lithium ion battery a reality, however, a pseudocapacitive material of each electrode type, anode and cathode, must be paired. To date, many pseudocapacitive materials have been identified, but nearly all of them are redox active in a voltage range more suitable for anode materials. Recently, we identified a pseudocapacitive cathode material, nanostructured LiMn2O4 which shows impressive rate capabilities. Unfortunately, the improvements came at the cost of energy density, which decreased significantly with decreasing crystallite size. Kinetics for different crystallite sizes, however, increased suddenly below a certain critical crystallite size. We found that this critical crystallite size, below which pseudocapacitance occurred, was linked to a suppression of phase transition in nanoscale LiMn2O4. To address the capacity loss due to dissolution in high surface area nanostructured LiMn2O4 powders, a sol-gel templating method which formed dissolution resistant surfaces was employed. The resulting materials had long needle-like morphology and showed higher capacity and less dissolution than a similarly sized material synthesized with a different structure. It was concluded that the needles of the higher capacity structure were dissolution resistant surfaces along their lengths and therefore maintained higher energy density. In another approach, higher capacity was achieved in nanostructured LiMn2O4 with the addition of magnesium into the crystal structure. It was theorized that the increased capacity came from the magnesium ions stabilizing the surface from dissolution, therefore increasing capacity. This understanding and optimization of nanostructured LiMn2O4 has led to the first scalable pseudocapacitive cathode material that can be effectively used in fast charging, long cycle lifetime lithium ion batteries.

Nanostructured Materials for Energy Storage

Download Nanostructured Materials for Energy Storage PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527838864
Total Pages : 1981 pages
Book Rating : 4.5/5 (278 download)

DOWNLOAD NOW!


Book Synopsis Nanostructured Materials for Energy Storage by : Kalim Deshmukh

Download or read book Nanostructured Materials for Energy Storage written by Kalim Deshmukh and published by John Wiley & Sons. This book was released on 2024-08-14 with total page 1981 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive reference work for researchers and engineers working with advanced and emerging nanostructured battery and supercapacitor materials Lithium-ion batteries and supercapacitors play a vital role in the paradigm shift towards sustainable energy technology. This book reviews how and why different nanostructured materials improve the performance and stability of batteries and capacitors. Sample materials covered throughout the work include: Graphene, carbon nanotubes, and carbon nanofibers MXenes, hexagonal boron nitride, and transition metal dichalcogenides Transition metal oxides, metal-organic frameworks, and lithium titanates Gel polymer electrolytes, hydrogels, and conducting polymer nanocomposites For materials scientists, electrochemists, and solid state chemists, this book is an essential reference to understand the lithium-ion battery and supercapacitor applications of nanostructured materials that are most widely used for developing low-cost, rapid, and highly efficient energy storage systems.

Nano-engineered Electrode Materials for Advanced Lithium-ion Batteries

Download Nano-engineered Electrode Materials for Advanced Lithium-ion Batteries PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 302 pages
Book Rating : 4.:/5 (94 download)

DOWNLOAD NOW!


Book Synopsis Nano-engineered Electrode Materials for Advanced Lithium-ion Batteries by : Yun Xu

Download or read book Nano-engineered Electrode Materials for Advanced Lithium-ion Batteries written by Yun Xu and published by . This book was released on 2014 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium ion batteries are currently the energy source of choice for small mobile devise like cell phones, laptops, owning to their balance of energy density with power density compared to other energy storage devices, like nickel cadmium batteries. At present there is great urgent need to replace gasoline with environmental healthy electricity. Li-ion batteries became a great alternative as an energy carrier for electric and hybrid electric vehicles. The ever increased power density and the life time of the battery are highly desirable in the application. So there is a great space for the improvement of lithium ion batteries. Thus the focus of the study is put on increasing the power density and cycle life of batteries. Performance of batteries could be improved by means of synthesizing composites, reduce interface resistance, building two dimensional and three dimensional architecture, etc. High performance anode materials such as two dimensional MoO2/graphite oxide composite, three dimensional anode material Co3O4 on nickel foam as well were successfully developed and showed excellent performance. The composites show better performance than each component due to the synergistic effects between the components. By taking advantage of the two-dimensional and three-dimensional structure, the electrodes exhibited stable output and high power density, as been discussed in chapter 4 and chapter 5. Meanwhile, cathode materials with high stability and high rate capability were synthesized, such as LiMn2O4, V2O5. By doping cations into cathodes, conductivity and structural stability could be improved. Also the electronic structure could also been changed due to the introduction of the cations with different valance. The cathodes were proved to be both stable and fast response to current, as been discussed in chapter 6 and chapter 7. Another way of increase power density is to increase the potential of battery. This is achieved by increase the potential of cathode amterials. Also by modify the surface the high potential electrode, we successfully alleiviate the problem of surface consumption of electrolyte. Nickel doped LiMn2O4 (LiMn1.6Ni0.4O4) is shown to have both high power density and stability. By having higher concentration of Mn3+ ions at surface, we have solve the problem of surface oxidation of electrolyte. Also taking advantage of carbon coating, the dissolution of Mn2+ into electrolyte is also prohibited while the electronic conductivity is increase, as been discussed in chapter 8.1. A new concept of bat-capacitor was brought out too by taking advantage of fast charge nd discharge of capacitor. By combining battery and capacitor, capacitor can serve as lithium ions buffer and reservoir before they can diffuse into battery. Just by simply annealing amorphous materials and forming a partially crystallized electrode, which can be treated as complicated system of nanobatteries and nanocapacitors, as been discussed in chapter 9.

Nanotechnology for Lithium-Ion Batteries

Download Nanotechnology for Lithium-Ion Batteries PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461446058
Total Pages : 288 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Nanotechnology for Lithium-Ion Batteries by : Yaser Abu-Lebdeh

Download or read book Nanotechnology for Lithium-Ion Batteries written by Yaser Abu-Lebdeh and published by Springer Science & Business Media. This book was released on 2012-10-17 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book combines two areas of intense interest: nanotechnology, and energy conversion and storage devices. In particular, Li-ion batteries have enjoyed conspicuous success in many consumer electronic devices and their projected use in vehicles that will revolutionize the way we travel in the near future. For many applications, Li-ion batteries are the battery of choice. This book consolidates the scattered developments in all areas of research related to nanotechnology and lithium ion batteries.

Nanomaterials for Lithium-Ion Batteries

Download Nanomaterials for Lithium-Ion Batteries PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9814316407
Total Pages : 464 pages
Book Rating : 4.8/5 (143 download)

DOWNLOAD NOW!


Book Synopsis Nanomaterials for Lithium-Ion Batteries by : Rachid Yazami

Download or read book Nanomaterials for Lithium-Ion Batteries written by Rachid Yazami and published by CRC Press. This book was released on 2013-10-08 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the most recent advances in the science and technology of nanostructured materials for lithium-ion application. With contributions from renowned scientists and technologists, the chapters discuss state-of-the-art research on nanostructured anode and cathode materials, some already used in commercial batteries and others still in development. They include nanostructured anode materials based on Si, Ge, Sn, and other metals and metal oxides together with cathode materials of olivine, the hexagonal and spinel crystal structures.

Synthesis and Modification of High-Nickel Cathode Materials for Next Generation Lithium Ion Batteries

Download Synthesis and Modification of High-Nickel Cathode Materials for Next Generation Lithium Ion Batteries PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (142 download)

DOWNLOAD NOW!


Book Synopsis Synthesis and Modification of High-Nickel Cathode Materials for Next Generation Lithium Ion Batteries by : Au Nguyen

Download or read book Synthesis and Modification of High-Nickel Cathode Materials for Next Generation Lithium Ion Batteries written by Au Nguyen and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The limited worldwide Cobalt resource has spurred demand for new cathode materials with reduced Cobalt reliance. Substituting Cobalt with Nickel giving high-Nickel cathode material is a promising solution due to its high energy density and cheaper price. However, the poor cycling stability of high-nickel cathode materials is the major challenge that hinders their widespread adoption in electric vehicles and other energy storage applications. This work reports a significant advance in the development of high-nickel cathode materials with improved cycling stability. Firstly, a scalable synthesis route is developed to produce high-nickel cathodes with favorable morphology and high nickel content of 92%. Various low-cost doping elements including Mg, Al and Ti are screened to improve the structure of high-nickel cathodes during cycling. A Dual Protective strategy with AlPO4 nanoparticles as a representative is introduced as a low cost and effective approach to prolong the cycle stability of high-nickel cathodes. Finally, single-crystalline high-nickel cathodes are synthesized, and their electrochemical performance is compared with polycrystalline cathodes. The synthesized high-nickel cathode materials exhibit excellent electrochemical performance and significantly improved cycling stability. This work demonstrates promising pathways towards the commercialization of high-nickel cathode materials for Lithium Ion Batteries.

Development of Nanostructured Alloy-based Composite Anode Materials for Lithium- and Sodium-ion Batteries

Download Development of Nanostructured Alloy-based Composite Anode Materials for Lithium- and Sodium-ion Batteries PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 324 pages
Book Rating : 4.:/5 (966 download)

DOWNLOAD NOW!


Book Synopsis Development of Nanostructured Alloy-based Composite Anode Materials for Lithium- and Sodium-ion Batteries by : Sang Ok Kim

Download or read book Development of Nanostructured Alloy-based Composite Anode Materials for Lithium- and Sodium-ion Batteries written by Sang Ok Kim and published by . This book was released on 2016 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium-ion batteries are the dominant energy storage technology in portable electronic applications due to their high energy density, long cycle life, and low self-discharge rate. Efforts to extend their implementation into rapidly growing electric vehicles and large-scale stationary energy storage devices require further improvements of performance and safety, as well as cost reduction. In this regard, the development of low-cost, advanced electrode materials for next generation lithium-ion batteries or sodium-ion batteries is increasingly being pursued to achieve these requirements. The purpose of this dissertation is to explore and develop several types of composite alloy-based anodes that can possibly lead to the enhancement of lithium- or sodium-storage performance. Alloy anodes have shown great potential for realization of high-performance lithium- or sodium-ion battery systems with enhanced safety as they offer high theoretical specific capacity and higher operating voltages than graphite. In addition, the successful employment of earth-abundant materials such as silicon and phosphorus could also result in a reduction in battery manufacturing cost. However, the major obstacles associated with the large volume change upon electrochemical reactions give rise to severe capacity fading in the first few cycles, making their implementation into commercial cells quite challenging. In order to overcome this issue, the alloy-based composite anodes are synthesized by applying the active/inactive matrix concept. The composites are capable of possessing the following advantages: (i) structural reinforcement and suppression of particle agglomeration upon cycling through a mechanically durable buffer; (ii) enhanced electrochemical reversibility and fast electrode kinetics through nanoscale active materials; (iii) high conductivity and facile electron transport through a conducting phase; (iv) high chemical and electrochemical stability through an electrochemically inert buffer. Moreover, the composites synthesized have reasonably high tap density that is beneficial for improving the volumetric capacity of lithium- or sodium-ion cells. In this dissertation, three different low-cost alloy-based composite anodes are developed by a low-cost, facile, and scalable high-energy mechanical milling: silicon-, zinc-, and phosphorus-based composites. All the composite systems studied in this work demonstrate enhancements in lithium- or sodium-ion storage performance in terms of high capacity, long cycle life, and high rate capability, while maintaining high tap density. By controlling the type and amount of an inactive matrix, the effects of each inactive matrix on the electrochemical performance of the composite anodes are investigated. In addition, the mechanism for the performance improvement is discussed.

Nanostructured Materials for Electrochemical Energy Production and Storage

Download Nanostructured Materials for Electrochemical Energy Production and Storage PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387493239
Total Pages : 241 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis Nanostructured Materials for Electrochemical Energy Production and Storage by : Edson Roberto Leite

Download or read book Nanostructured Materials for Electrochemical Energy Production and Storage written by Edson Roberto Leite and published by Springer Science & Business Media. This book was released on 2010-03-20 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is an authoritative reference from world-renowned research groups for those working in materials science and electrochemistry. The authors describe properties of nanostructured materials that can improve performance in alternative energy devices.

Nanostructured Materials Engineering and Characterization for Battery Applications

Download Nanostructured Materials Engineering and Characterization for Battery Applications PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0323914217
Total Pages : 715 pages
Book Rating : 4.3/5 (239 download)

DOWNLOAD NOW!


Book Synopsis Nanostructured Materials Engineering and Characterization for Battery Applications by : Amadou Belal Gueye

Download or read book Nanostructured Materials Engineering and Characterization for Battery Applications written by Amadou Belal Gueye and published by Elsevier. This book was released on 2024-06-28 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured Materials Engineering and Characterization for Battery Applications is designed to help solve fundamental and applied problems in the field of energy storage. Broken up into four separate sections, the book begins with a discussion of the fundamental electrochemical concepts in the field of energy storage. Other sections look at battery materials engineering such as cathodes, electrolytes, separators and anodes and review various battery characterization methods and their applications. The book concludes with a review of the practical considerations and applications of batteries.This will be a valuable reference source for university professors, researchers, undergraduate and postgraduate students, as well as scientists working primarily in the field of materials science, applied chemistry, applied physics and nanotechnology. Presents practical consideration for battery usage such as LCA, recycling and green batteries Covers battery characterization techniques including electrochemical methods, microscopy, spectroscopy and X-ray methods Explores battery models and computational materials design theories

Nanostructured Conductive Polymers

Download Nanostructured Conductive Polymers PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119956544
Total Pages : 740 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Nanostructured Conductive Polymers by : Ali Eftekhari

Download or read book Nanostructured Conductive Polymers written by Ali Eftekhari and published by John Wiley & Sons. This book was released on 2011-07-07 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a vital link between nanotechnology and conductive polymers, this book covers advances in topics of this interdisciplinary area. In each chapter, there is a discussion of current research issues while reviewing the background of the topic. The selection of topics and contributors from around the globe make this text an outstanding resource for researchers involved in the field of nanomaterials or polymer materials design. The book is divided into three sections: From Conductive Polymers to Nanotechnology, Synthesis and Characterization, and Applications.

Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries

Download Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030289435
Total Pages : 230 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries by : Snehashis Choudhury

Download or read book Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries written by Snehashis Choudhury and published by Springer Nature. This book was released on 2019-09-25 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis makes significant advances in the design of electrolytes and interfaces in electrochemical cells that utilize reactive metals as anodes. Such cells are of contemporary interest because they offer substantially higher charge storage capacity than state-of-the-art lithium-ion battery technology. Batteries based on metallic anodes are currently considered impractical and unsafe because recharge of the anode causes physical and chemical instabilities that produce dendritic deposition of the metal leading to catastrophic failure via thermal runaway. This thesis utilizes a combination of chemical synthesis, physical & electrochemical analysis, and materials theory to investigate structure, ion transport properties, and electrochemical behaviors of hybrid electrolytes and interfacial phases designed to prevent such instabilities. In particular, it demonstrates that relatively low-modulus electrolytes composed of cross-linked networks of polymer-grafted nanoparticles stabilize electrodeposition of reactive metals by multiple processes, including screening electrode electrolyte interactions at electrochemical interfaces and by regulating ion transport in tortuous nanopores. This discovery is significant because it overturns a longstanding perception in the field of nanoparticle-polymer hybrid electrolytes that only solid electrolytes with mechanical modulus higher than that of the metal electrode are able to stabilize electrodeposition of reactive metals.

Development of Functional Materials for Fast-charging Graphite Anode and Stabilization of Lithium Metal Anode in Rechargeable Lithium Batteries

Download Development of Functional Materials for Fast-charging Graphite Anode and Stabilization of Lithium Metal Anode in Rechargeable Lithium Batteries PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (142 download)

DOWNLOAD NOW!


Book Synopsis Development of Functional Materials for Fast-charging Graphite Anode and Stabilization of Lithium Metal Anode in Rechargeable Lithium Batteries by : Pei Shi

Download or read book Development of Functional Materials for Fast-charging Graphite Anode and Stabilization of Lithium Metal Anode in Rechargeable Lithium Batteries written by Pei Shi and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under the electrification of transportation and deep decarbonization of the energy infrastructure requirement, the development and deployment of the next-generation battery with fast-charging capability and high energy is one of the hottest topics among academic and industrial fields. Current lithium-ion batteries (LIBs) offer moderate energy density enabling limited driving range and take considerably longer to recharge than traditional vehicles. Fast charging and high-energy density batteries are the key requirements for the widespread economic success of electric vehicles., This dissertation focuses on the practical application of rechargeable lithium batteries by designing and synthesizing different kinds of polymers and electrolyte formulation. In Chapter 2, I synthesized a kind of Li ion affinity PEI branched polymer (N-poly) and added it into the graphite anode as the binder material. The N-poly-based polymer composite anode binder could greatly enhance the rate performance the cycle performance at high rate (3 C and 6 C). The functional polymer N-polymer was proven to be favorable for the fast-charging application. In Chapter 3, ionic liquids were chosen to formulate the advanced and nonflammable electrolyte for high-energy-density Li metal batteries due to the anion-rich in the electrolyte. In Li∥NMC811 coin cells, the cell with ionic liquid-based electrolytes could maintain over 175 cycling with 80% capacity retention. The special electrolyte structure could promote an anion decomposition on Li metal anode and lead to high CE and longer cycling life. In Chapter 4, I designed and synthesized a new Li ion affinity polymer based on the aza-crown ether for the artificial SEI layer on the Li metal anode surface had been. The so-formed artificial solid electrolyte interphase has excellent passivation, homogeneity, and mechanical strength, and could tune the Li plating and enable the LiF rich SEI layer thus effectively stabilizing the Li/electrolyte interface and preventing electrolyte decomposition on cycling. In Chapter 5, a facile method to achieve a large size of a kind of reactive polymer PFSPA coated separator in the air atmosphere had been developed. And the coated separator can elongate the cycling number from 65 cycles to 220 cycles. It is because the polymer PFSPA in separator can swell into the electrolyte, attach the lithium surface, and generate LiF after reaction with Li. It helps to form a quite effective SEI layer upon cycling in the carbonate-based electrolyte. Therefore, the work showed tremendous potential for practical application. I concluded this dissertation work in Chapter 6 and briefly discussed the possible future work.

Electrochemical Energy Storage

Download Electrochemical Energy Storage PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118998146
Total Pages : 96 pages
Book Rating : 4.1/5 (189 download)

DOWNLOAD NOW!


Book Synopsis Electrochemical Energy Storage by : Jean-Marie Tarascon

Download or read book Electrochemical Energy Storage written by Jean-Marie Tarascon and published by John Wiley & Sons. This book was released on 2015-02-23 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological advances as well as the challenges that must still be resolved in the field of electrochemical storage, taking into account sustainable development and the limited time available to us.

Nanomaterials in Advanced Batteries and Supercapacitors

Download Nanomaterials in Advanced Batteries and Supercapacitors PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319260820
Total Pages : 576 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Nanomaterials in Advanced Batteries and Supercapacitors by : Kenneth I. Ozoemena

Download or read book Nanomaterials in Advanced Batteries and Supercapacitors written by Kenneth I. Ozoemena and published by Springer. This book was released on 2016-07-18 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an authoritative source of information on the use of nanomaterials to enhance the performance of existing electrochemical energy storage systems and the manners in which new such systems are being made possible. The book covers the state of the art of the design, preparation, and engineering of nanoscale functional materials as effective catalysts and as electrodes for electrochemical energy storage and mechanistic investigation of electrode reactions. It also provides perspectives and challenges for future research. A related book by the same editors is: Nanomaterials for Fuel Cell Catalysis.

Design and Synthesis of Nanostructured Materials for Flexible Lithium-Ion Battery

Download Design and Synthesis of Nanostructured Materials for Flexible Lithium-Ion Battery PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 107 pages
Book Rating : 4.:/5 (122 download)

DOWNLOAD NOW!


Book Synopsis Design and Synthesis of Nanostructured Materials for Flexible Lithium-Ion Battery by : Xing Lu

Download or read book Design and Synthesis of Nanostructured Materials for Flexible Lithium-Ion Battery written by Xing Lu and published by . This book was released on 2020 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, continuous progress in electronic devices, especially in wearable devices, has attracted surging attention from the consumer market. Therefore, flexible energy storage was developed to fulfill the needs of new flexible devices with ultra-lightweight and small volume. The very recent products and concepts such as touch screens, roll-up displays, wearable sensors, and even implantable medical devices have shown great potential in flexible applications because of their extreme convenience. However, the development of corresponding power sources largely lags behind these emerging technologies of flexible devices. Lithium-ion batteries (LIBs), owing to high energy density and high operating voltage, have been serving as an ideal power source for flexible devices. Nevertheless, direct implementation of commercial LIBs leads to irreversible deformation of structural integrity, short-circuiting or even severe explosion hazard. Such dilemma originates from the poor flexibility of electrode and electrolyte. For electrode side, current electrode sheets used in LIBs are manufactured by holding active material particles and conductive agents by a small weight fraction of polymeric binders. Such fragile electrode structure could easily lose electrical contact under physical deformation, leading to disintegrated electrode sheets, drastic degradations of electrochemical performance, and even safety issue due to internal short-circuiting. For electrolyte side, LIBs employ nonaqueous liquid electrolyte with high ionic conductivity and excellent electrode wettability. However, the drawbacks of such electrolyte system are also evident: poor ion selectivity, flammability, and leakage issue while being deformed render unsuitability of liquid electrolyte for flexible device application. To fabricate flexible LIBs, the current state-of-the-art research employs two design strategies involving electrode structure. One popular strategy is constructing scaffolding structure using carbonaceous materials to function as supportive matrix for active materials. Given carbon nanotubes (CNTs) as an example, the CNTs possess remarkable electrical conductivity and mechanical strength (elastic modulus: 1 TPa, tensile strength: 100 GPa), which contribute to conductive and flexible electrodes as the high-aspect ratio of CNTs can serve as threading materials. Another strategy is rational architecture design of active materials that are conventionally particulate. For example, vanadium pentoxide nanowires can be readily fabricated into free-standing and binder-free electrode membrane. Nevertheless, the most of strategies above still fall short of practicality due to reduced portion of active materials and consequently compromised energy density. In comparison with the mobile liquid electrolyte, the emerging solid-state electrolytes could largely solve circumventing issues of ion selectivity, flammability and leakage. As one prevailing category, solid polymer electrolytes comprising polymers and lithium salts feature decent manufacturing flexibility. Meanwhile, their poor ionic conductivity (10 8 ~ 10 5S cm 1) could be ameliorated by gel polymer electrolytes with organic solvents (plasticizers) and/or inorganic solid fillers (e.g., SiO2). Nevertheless, the non-conductive fillers block ion-transport pathways while allow partial electrical conduction, limiting the interfacial engineering and compatibility with electrodes. In this dissertation, we tackle the aforementioned critical issues of flexible batteries in two aspects. Firstly, we design and synthesize flexible electrode from prospective of material and architecture. A novel cathode constructed by entangling networks of V2O5, CNTs and polytetrafluoroethylene (PTFE) is design and fabricated. Notably, the resulting flexible battery simultaneously achieves excellent mechanical strength (800 MPa young's module), superior cycle durability (86% retention after 1000 times bending) and intriguing capacity (300 mAh g-1 at 0.25C). Furthermore, a Zr-based metal-organic framework (MOF) possessing open-metal sites (OMSs) was used as the microporous filler to facilitate cation (Li+) conduction in GPL. Compared with the state-of-the-art research, our work significantly enhanced tLi+ of GLP from 0.39 up to 0.66 while maintained 1.5 mS cm 1 ionic conductivity. Notably, a reduced thermal activation energy (from 113 to 76 meV) was observed, suggesting diffusion energy barriers was eased by selective promotion of Li+ conduction. To conclude, flexible Li-ion batterie system research is still at early developing stage. Above work provides rational design and improvement of the current FLIBs system in rather facile and cost-effective way. The methodology we proposed are hoped to bring further innovation toward FLIBs field and be extended to numerous applications in the future.