Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Decision Trees For Business Intelligence And Data Mining
Download Decision Trees For Business Intelligence And Data Mining full books in PDF, epub, and Kindle. Read online Decision Trees For Business Intelligence And Data Mining ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Decision Trees for Business Intelligence and Data Mining by : Barry De Ville
Download or read book Decision Trees for Business Intelligence and Data Mining written by Barry De Ville and published by SAS Press. This book was released on 2006 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This example-driven guide illustrates the application and operation of decision trees in data mining, business intelligence, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements other business intelligence applications.
Book Synopsis Data Mining With Decision Trees: Theory And Applications (2nd Edition) by : Oded Z Maimon
Download or read book Data Mining With Decision Trees: Theory And Applications (2nd Edition) written by Oded Z Maimon and published by World Scientific. This book was released on 2014-09-03 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining; it is the science of exploring large and complex bodies of data in order to discover useful patterns. Decision tree learning continues to evolve over time. Existing methods are constantly being improved and new methods introduced.This 2nd Edition is dedicated entirely to the field of decision trees in data mining; to cover all aspects of this important technique, as well as improved or new methods and techniques developed after the publication of our first edition. In this new edition, all chapters have been revised and new topics brought in. New topics include Cost-Sensitive Active Learning, Learning with Uncertain and Imbalanced Data, Using Decision Trees beyond Classification Tasks, Privacy Preserving Decision Tree Learning, Lessons Learned from Comparative Studies, and Learning Decision Trees for Big Data. A walk-through guide to existing open-source data mining software is also included in this edition.This book invites readers to explore the many benefits in data mining that decision trees offer:
Book Synopsis Business Intelligence by : Carlo Vercellis
Download or read book Business Intelligence written by Carlo Vercellis and published by John Wiley & Sons. This book was released on 2011-08-10 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
Book Synopsis Data Mining for Business Analytics by : Galit Shmueli
Download or read book Data Mining for Business Analytics written by Galit Shmueli and published by John Wiley & Sons. This book was released on 2019-10-14 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
Book Synopsis Decision Trees for Analytics Using SAS Enterprise Miner by : Barry De Ville
Download or read book Decision Trees for Analytics Using SAS Enterprise Miner written by Barry De Ville and published by . This book was released on 2019-07-03 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision Trees for Analytics Using SAS Enterprise Miner is the most comprehensive treatment of decision tree theory, use, and applications available in one easy-to-access place. This book illustrates the application and operation of decision trees in business intelligence, data mining, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements data mining approaches such as regression, as well as other business intelligence applications that incorporate tabular reports, OLAP, or multidimensional cubes. An expanded and enhanced release of Decision Trees for Business Intelligence and Data Mining Using SAS Enterprise Miner, this book adds up-to-date treatments of boosting and high-performance forest approaches and rule induction. There is a dedicated section on the most recent findings related to bias reduction in variable selection. It provides an exhaustive treatment of the end-to-end process of decision tree construction and the respective considerations and algorithms, and it includes discussions of key issues in decision tree practice. Analysts who have an introductory understanding of data mining and who are looking for a more advanced, in-depth look at the theory and methods of a decision tree approach to business intelligence and data mining will benefit from this book.
Book Synopsis Predictive Analytics and Data Mining by : Vijay Kotu
Download or read book Predictive Analytics and Data Mining written by Vijay Kotu and published by Morgan Kaufmann. This book was released on 2014-11-27 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Put Predictive Analytics into ActionLearn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining.You’ll be able to:1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process.2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases.3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples
Book Synopsis Data Mining and Knowledge Discovery Handbook by : Oded Maimon
Download or read book Data Mining and Knowledge Discovery Handbook written by Oded Maimon and published by Springer Science & Business Media. This book was released on 2006-05-28 with total page 1378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.
Book Synopsis Data Mining and Business Analytics with R by : Johannes Ledolter
Download or read book Data Mining and Business Analytics with R written by Johannes Ledolter and published by John Wiley & Sons. This book was released on 2013-05-28 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification. Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents: A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools Illustrations of how to use the outlined concepts in real-world situations Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials Numerous exercises to help readers with computing skills and deepen their understanding of the material Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences.
Book Synopsis Customer and Business Analytics by : Daniel S. Putler
Download or read book Customer and Business Analytics written by Daniel S. Putler and published by CRC Press. This book was released on 2012-05-07 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the tex
Book Synopsis Adaptive Business Intelligence by : Zbigniew Michalewicz
Download or read book Adaptive Business Intelligence written by Zbigniew Michalewicz and published by Springer Science & Business Media. This book was released on 2006-12-02 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adaptive business intelligence systems combine prediction and optimization techniques to assist decision makers in complex, rapidly changing environments. These systems address fundamental questions: What is likely to happen in the future? What is the best course of action? Adaptive Business Intelligence explores elements of data mining, predictive modeling, forecasting, optimization, and adaptability. The book explains the application of numerous prediction and optimization techniques, and shows how these concepts can be used to develop adaptive systems. Coverage includes linear regression, time-series forecasting, decision trees and tables, artificial neural networks, genetic programming, fuzzy systems, genetic algorithms, simulated annealing, tabu search, ant systems, and agent-based modeling.
Book Synopsis Evolutionary Decision Trees in Large-Scale Data Mining by : Marek Kretowski
Download or read book Evolutionary Decision Trees in Large-Scale Data Mining written by Marek Kretowski and published by Springer. This book was released on 2019-06-05 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified framework, based on specialized evolutionary algorithms, for the global induction of various types of classification and regression trees from data. The resulting univariate or oblique trees are significantly smaller than those produced by standard top-down methods, an aspect that is critical for the interpretation of mined patterns by domain analysts. The approach presented here is extremely flexible and can easily be adapted to specific data mining applications, e.g. cost-sensitive model trees for financial data or multi-test trees for gene expression data. The global induction can be efficiently applied to large-scale data without the need for extraordinary resources. With a simple GPU-based acceleration, datasets composed of millions of instances can be mined in minutes. In the event that the size of the datasets makes the fastest memory computing impossible, the Spark-based implementation on computer clusters, which offers impressive fault tolerance and scalability potential, can be applied.
Book Synopsis Business Intelligence and Data Mining by : Anil Maheshwari
Download or read book Business Intelligence and Data Mining written by Anil Maheshwari and published by Business Expert Press. This book was released on 2014-12-31 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: “This book is a splendid and valuable addition to this subject. The whole book is well written and I have no hesitation to recommend that this can be adapted as a textbook for graduate courses in Business Intelligence and Data Mining.” Dr. Edi Shivaji, Des Moines, Iowa “As a complete novice to this area just starting out on a MBA course I found the book incredibly useful and very easy to follow and understand. The concepts are clearly explained and make it an easy task to gain an understanding of the subject matter.” -- Mr. Craig Domoney, South Africa. Business Intelligence and Data Mining is a conversational and informative book in the exploding area of Business Analytics. Using this book, one can easily gain the intuition about the area, along with a solid toolset of major data mining techniques and platforms. This book can thus be gainfully used as a textbook for a college course. It is also short and accessible enough for a busy executive to become a quasi-expert in this area in a couple of hours. Every chapter begins with a case-let from the real world, and ends with a case study that runs across the chapters.
Book Synopsis Data Mining and Statistics for Decision Making by : Stéphane Tufféry
Download or read book Data Mining and Statistics for Decision Making written by Stéphane Tufféry and published by John Wiley & Sons. This book was released on 2011-03-23 with total page 738 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques. Starts from basic principles up to advanced concepts. Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software. Gives practical tips for data mining implementation to solve real world problems. Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring. Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.
Book Synopsis Handbook of Data Mining and Knowledge Discovery by : Jan M. Żytkow
Download or read book Handbook of Data Mining and Knowledge Discovery written by Jan M. Żytkow and published by Oxford University Press, USA. This book was released on 2002 with total page 1026 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining, or knowledge discovery in databases (KDD), is one of the fastest growing areas in computing application: it offers powerful tools to analyze the many large data bases used in business, science, and industry. Data mining technology searches large databases to extract information and patterns that can be translated into useful applications, such as classifying or predicting customer behavior. This book brings together fundamental knowledge on all aspects of data mining--concepts, theory, techniques, applications, and case studies. Designed for students and professionals in such fields as computing applications, information systems management and strategic research and management, the Handbook is a comprehensive guide to essential tools and technology, from neural networks to artificial intelligence. There is a strong emphasis on real-world case studies in such areas as banking, finance, marketing management, real estate, engineering, medicine, pharmacology, and the biosciences. A much needed resource on one of the fastest growing areas of computer applications--the development and use of tools to analyze, interpret, and make use of the enormous amounts of information stored in the world's databases.
Book Synopsis Data Mining & Business Intelligence by : Mohit Thakkar
Download or read book Data Mining & Business Intelligence written by Mohit Thakkar and published by Mohit Thakkar. This book was released on 2018-01-12 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: It often happens that when we try to study a subject for some examination or a job interview, we just don’t find the right content. The problem with the reference books is that they are too descriptive for last moment studies. Whereas the problem with local publications is that they are inaccurate as compared to the reference books. This particular book encapsulates the subject notes on Data Mining & Business Intelligence with the combined benefits of reference books & local publications. It has the accuracy of a reference book as well as the abstraction of a local publication. The author studied the subject from various sources such as web lectures, reference books, online tutorials & so on. After having a thorough understanding of the subject, the author compiled this book for an easy understanding of the subject. This book presents the content in the form of question & answers, with utmost simplicity of language, and in an abstract manner so that it can be used for last moment studies. This book can be used by: Ø Students to prepare for their examinations Ø Professionals to prepare for job interviews. Ø Individuals willing to have a basic understanding of the domain: Data Mining & Business Intelligence. Happy Reading! 😄
Book Synopsis Stream Data Mining: Algorithms and Their Probabilistic Properties by : Leszek Rutkowski
Download or read book Stream Data Mining: Algorithms and Their Probabilistic Properties written by Leszek Rutkowski and published by Springer. This book was released on 2019-03-16 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unique approach to stream data mining. Unlike the vast majority of previous approaches, which are largely based on heuristics, it highlights methods and algorithms that are mathematically justified. First, it describes how to adapt static decision trees to accommodate data streams; in this regard, new splitting criteria are developed to guarantee that they are asymptotically equivalent to the classical batch tree. Moreover, new decision trees are designed, leading to the original concept of hybrid trees. In turn, nonparametric techniques based on Parzen kernels and orthogonal series are employed to address concept drift in the problem of non-stationary regressions and classification in a time-varying environment. Lastly, an extremely challenging problem that involves designing ensembles and automatically choosing their sizes is described and solved. Given its scope, the book is intended for a professional audience of researchers and practitioners who deal with stream data, e.g. in telecommunication, banking, and sensor networks.
Book Synopsis Principles of Data Mining by : Max Bramer
Download or read book Principles of Data Mining written by Max Bramer and published by Springer. This book was released on 2016-11-09 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains and explores the principal techniques of Data Mining, the automatic extraction of implicit and potentially useful information from data, which is increasingly used in commercial, scientific and other application areas. It focuses on classification, association rule mining and clustering. Each topic is clearly explained, with a focus on algorithms not mathematical formalism, and is illustrated by detailed worked examples. The book is written for readers without a strong background in mathematics or statistics and any formulae used are explained in detail. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self study, this book aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field. Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included. This expanded third edition includes detailed descriptions of algorithms for classifying streaming data, both stationary data, where the underlying model is fixed, and data that is time-dependent, where the underlying model changes from time to time - a phenomenon known as concept drift.