Data Mining and Knowledge Discovery via Logic-Based Methods

Download Data Mining and Knowledge Discovery via Logic-Based Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 144191630X
Total Pages : 371 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Knowledge Discovery via Logic-Based Methods by : Evangelos Triantaphyllou

Download or read book Data Mining and Knowledge Discovery via Logic-Based Methods written by Evangelos Triantaphyllou and published by Springer Science & Business Media. This book was released on 2010-06-08 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.

Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques

Download Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387342966
Total Pages : 784 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques by : Evangelos Triantaphyllou

Download or read book Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques written by Evangelos Triantaphyllou and published by Springer Science & Business Media. This book was released on 2006-09-10 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book outlines the core theory and practice of data mining and knowledge discovery (DM & KD) examining theoretical foundations for various methods, and presenting an array of examples, many drawn from real-life applications. Most theoretical developments are accompanied by extensive empirical analysis, offering a deep insight into both theoretical and practical aspects of the subject. The book presents the combined research experiences of 40 expert contributors of world renown.

Principles of Data Mining and Knowledge Discovery

Download Principles of Data Mining and Knowledge Discovery PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540664904
Total Pages : 608 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Principles of Data Mining and Knowledge Discovery by : Jan Zytkow

Download or read book Principles of Data Mining and Knowledge Discovery written by Jan Zytkow and published by Springer Science & Business Media. This book was released on 1999-09-01 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD'99, held in Prague, Czech Republic in September 1999. The 28 revised full papers and 48 poster presentations were carefully reviewed and selected from 106 full papers submitted. The papers are organized in topical sections on time series, applications, taxonomies and partitions, logic methods, distributed and multirelational databases, text mining and feature selection, rules and induction, and interesting and unusual issues.

Data Mining and Knowledge Discovery Handbook

Download Data Mining and Knowledge Discovery Handbook PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 038725465X
Total Pages : 1378 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Knowledge Discovery Handbook by : Oded Maimon

Download or read book Data Mining and Knowledge Discovery Handbook written by Oded Maimon and published by Springer Science & Business Media. This book was released on 2006-05-28 with total page 1378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.

Mathematical Methods for Knowledge Discovery and Data Mining

Download Mathematical Methods for Knowledge Discovery and Data Mining PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1599045303
Total Pages : 394 pages
Book Rating : 4.5/5 (99 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Methods for Knowledge Discovery and Data Mining by : Felici, Giovanni

Download or read book Mathematical Methods for Knowledge Discovery and Data Mining written by Felici, Giovanni and published by IGI Global. This book was released on 2007-10-31 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book focuses on the mathematical models and methods that support most data mining applications and solution techniques, covering such topics as association rules; Bayesian methods; data visualization; kernel methods; neural networks; text, speech, and image recognition; an invaluable resource for scholars and practitioners in the fields of biomedicine, engineering, finance, manufacturing, marketing, performance measurement, and telecommunications"--Provided by publisher.

Advances in Knowledge Discovery and Data Mining

Download Advances in Knowledge Discovery and Data Mining PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 638 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Advances in Knowledge Discovery and Data Mining by : Usama M. Fayyad

Download or read book Advances in Knowledge Discovery and Data Mining written by Usama M. Fayyad and published by . This book was released on 1996 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.

Knowledge Discovery with Support Vector Machines

Download Knowledge Discovery with Support Vector Machines PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118211030
Total Pages : 211 pages
Book Rating : 4.1/5 (182 download)

DOWNLOAD NOW!


Book Synopsis Knowledge Discovery with Support Vector Machines by : Lutz H. Hamel

Download or read book Knowledge Discovery with Support Vector Machines written by Lutz H. Hamel and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: An easy-to-follow introduction to support vector machines This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover: Knowledge discovery environments Describing data mathematically Linear decision surfaces and functions Perceptron learning Maximum margin classifiers Support vector machines Elements of statistical learning theory Multi-class classification Regression with support vector machines Novelty detection Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas.

Relational Data Mining

Download Relational Data Mining PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540422891
Total Pages : 422 pages
Book Rating : 4.4/5 (228 download)

DOWNLOAD NOW!


Book Synopsis Relational Data Mining by : Saso Dzeroski

Download or read book Relational Data Mining written by Saso Dzeroski and published by Springer Science & Business Media. This book was released on 2001-08 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.

Data Mining and Knowledge Discovery with Evolutionary Algorithms

Download Data Mining and Knowledge Discovery with Evolutionary Algorithms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662049236
Total Pages : 272 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Knowledge Discovery with Evolutionary Algorithms by : Alex A. Freitas

Download or read book Data Mining and Knowledge Discovery with Evolutionary Algorithms written by Alex A. Freitas and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics

Data Mining

Download Data Mining PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387367950
Total Pages : 601 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Data Mining by : Krzysztof J. Cios

Download or read book Data Mining written by Krzysztof J. Cios and published by Springer Science & Business Media. This book was released on 2007-10-05 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.

Principles of Data Mining and Knowledge Discovery

Download Principles of Data Mining and Knowledge Discovery PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540453725
Total Pages : 717 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Principles of Data Mining and Knowledge Discovery by : Djamel A. Zighed

Download or read book Principles of Data Mining and Knowledge Discovery written by Djamel A. Zighed and published by Springer. This book was released on 2003-07-31 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 4th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 2000, held in Lyon, France in September 2000. The 86 revised papers included in the book correspond to the 29 oral presentations and 57 posters presented at the conference. They were carefully reviewed and selected from 147 submissions. The book offers topical sections on new directions, rules and trees, databases and reward-based learning, classification, association rules and exceptions, instance-based discovery, clustering, and time series analysis.

Machine Learning and Data Mining in Pattern Recognition

Download Machine Learning and Data Mining in Pattern Recognition PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364203070X
Total Pages : 837 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Data Mining in Pattern Recognition by : Petra Perner

Download or read book Machine Learning and Data Mining in Pattern Recognition written by Petra Perner and published by Springer Science & Business Media. This book was released on 2009-07-21 with total page 837 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is no royal road to science, and only those who do not dread the fatiguing climb of its steep paths have a chance of gaining its luminous summits. Karl Marx A Universial Genius of the 19th Century Many scientists from all over the world during the past two years since the MLDM 2007 have come along on the stony way to the sunny summit of science and have worked hard on new ideas and applications in the area of data mining in pattern r- ognition. Our thanks go to all those who took part in this year's MLDM. We appre- ate their submissions and the ideas shared with the Program Committee. We received over 205 submissions from all over the world to the International Conference on - chine Learning and Data Mining, MLDM 2009. The Program Committee carefully selected the best papers for this year’s program and gave detailed comments on each submitted paper. There were 63 papers selected for oral presentation and 17 papers for poster presentation. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data-mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining. Among these topics this year were special contributions to subtopics such as attribute discre- zation and data preparation, novelty and outlier detection, and distances and simila- ties.

Decomposition Methodology for Knowledge Discovery and Data Mining

Download Decomposition Methodology for Knowledge Discovery and Data Mining PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 9813106441
Total Pages : 344 pages
Book Rating : 4.8/5 (131 download)

DOWNLOAD NOW!


Book Synopsis Decomposition Methodology for Knowledge Discovery and Data Mining by : Oded Maimon

Download or read book Decomposition Methodology for Knowledge Discovery and Data Mining written by Oded Maimon and published by World Scientific Publishing Company. This book was released on 2005-05-30 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining is the science and technology of exploring data in order to discover previously unknown patterns. It is a part of the overall process of Knowledge Discovery in Databases (KDD). The accessibility and abundance of information today makes data mining a matter of considerable importance and necessity. This book provides an introduction to the field with an emphasis on advanced decomposition methods in general data mining tasks and for classification tasks in particular. The book presents a complete methodology for decomposing classification problems into smaller and more manageable sub-problems that are solvable by using existing tools. The various elements are then joined together to solve the initial problem. The benefits of decomposition methodology in data mining include: increased performance (classification accuracy); conceptual simplification of the problem; enhanced feasibility for huge databases; clearer and more comprehensible results; reduced runtime by solving smaller problems and by using parallel/distributed computation; and the opportunity of using different techniques for individual sub-problems.

Classification Functions for Machine Learning and Data Mining

Download Classification Functions for Machine Learning and Data Mining PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031353471
Total Pages : 148 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Classification Functions for Machine Learning and Data Mining by : Tsutomu Sasao

Download or read book Classification Functions for Machine Learning and Data Mining written by Tsutomu Sasao and published by Springer Nature. This book was released on 2023-07-14 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a novel perspective on machine learning, offering distinct advantages over neural network-based techniques. This approach boasts a reduced hardware requirement, lower power consumption, and enhanced interpretability. The applications of this approach encompass high-speed classifications, including packet classification, network intrusion detection, and exotic particle detection in high-energy physics. Moreover, it finds utility in medical diagnosis scenarios characterized by small training sets and imbalanced data. The resulting rule generated by this method can be implemented either in software or hardware. In the case of hardware implementation, circuit design can employ look-up tables (memory), rather than threshold gates. The methodology described in this book involves extracting a set of rules from a training set, composed of categorical variable vectors and their corresponding classes. Unnecessary variables are eliminated, and the rules are simplified before being transformed into a sum-of-products (SOP) form. The resulting SOP exhibits the ability to generalize and predict outputs for new inputs. The effectiveness of this approach is demonstrated through numerous examples and experimental results using the University of California-Irvine (UCI) dataset. This book is primarily intended for graduate students and researchers in the fields of logic synthesis, machine learning, and data mining. It assumes a foundational understanding of logic synthesis, while familiarity with linear algebra and statistics would be beneficial for readers.

Recent Advances In Data Mining Of Enterprise Data: Algorithms And Applications

Download Recent Advances In Data Mining Of Enterprise Data: Algorithms And Applications PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814472174
Total Pages : 816 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances In Data Mining Of Enterprise Data: Algorithms And Applications by : Evangelos Triantaphyllou

Download or read book Recent Advances In Data Mining Of Enterprise Data: Algorithms And Applications written by Evangelos Triantaphyllou and published by World Scientific. This book was released on 2008-01-15 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of the new field of data mining is the analysis of large and complex datasets. Some very important datasets may be derived from business and industrial activities. This kind of data is known as “enterprise data”. The common characteristic of such datasets is that the analyst wishes to analyze them for the purpose of designing a more cost-effective strategy for optimizing some type of performance measure, such as reducing production time, improving quality, eliminating wastes, or maximizing profit. Data in this category may describe different scheduling scenarios in a manufacturing environment, quality control of some process, fault diagnosis in the operation of a machine or process, risk analysis when issuing credit to applicants, management of supply chains in a manufacturing system, or data for business related decision-making.

Foundations of Data Mining and Knowledge Discovery

Download Foundations of Data Mining and Knowledge Discovery PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540262572
Total Pages : 400 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Data Mining and Knowledge Discovery by : Tsau Young Lin

Download or read book Foundations of Data Mining and Knowledge Discovery written by Tsau Young Lin and published by Springer Science & Business Media. This book was released on 2005-09-02 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Foundations of Data Mining and Knowledge Discovery" contains the latest results and new directions in data mining research. Data mining, which integrates various technologies, including computational intelligence, database and knowledge management, machine learning, soft computing, and statistics, is one of the fastest growing fields in computer science. Although many data mining techniques have been developed, further development of the field requires a close examination of its foundations. This volume presents the results of investigations into the foundations of the discipline, and represents the state of the art for much of the current research. This book will prove extremely valuable and fruitful for data mining researchers, no matter whether they would like to uncover the fundamental principles behind data mining, or apply the theories to practical applications.

Business and Consumer Analytics: New Ideas

Download Business and Consumer Analytics: New Ideas PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030062228
Total Pages : 1000 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Business and Consumer Analytics: New Ideas by : Pablo Moscato

Download or read book Business and Consumer Analytics: New Ideas written by Pablo Moscato and published by Springer. This book was released on 2019-05-30 with total page 1000 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume handbook presents a collection of novel methodologies with applications and illustrative examples in the areas of data-driven computational social sciences. Throughout this handbook, the focus is kept specifically on business and consumer-oriented applications with interesting sections ranging from clustering and network analysis, meta-analytics, memetic algorithms, machine learning, recommender systems methodologies, parallel pattern mining and data mining to specific applications in market segmentation, travel, fashion or entertainment analytics. A must-read for anyone in data-analytics, marketing, behavior modelling and computational social science, interested in the latest applications of new computer science methodologies. The chapters are contributed by leading experts in the associated fields.The chapters cover technical aspects at different levels, some of which are introductory and could be used for teaching. Some chapters aim at building a common understanding of the methodologies and recent application areas including the introduction of new theoretical results in the complexity of core problems. Business and marketing professionals may use the book to familiarize themselves with some important foundations of data science. The work is a good starting point to establish an open dialogue of communication between professionals and researchers from different fields. Together, the two volumes present a number of different new directions in Business and Customer Analytics with an emphasis in personalization of services, the development of new mathematical models and new algorithms, heuristics and metaheuristics applied to the challenging problems in the field. Sections of the book have introductory material to more specific and advanced themes in some of the chapters, allowing the volumes to be used as an advanced textbook. Clustering, Proximity Graphs, Pattern Mining, Frequent Itemset Mining, Feature Engineering, Network and Community Detection, Network-based Recommending Systems and Visualization, are some of the topics in the first volume. Techniques on Memetic Algorithms and their applications to Business Analytics and Data Science are surveyed in the second volume; applications in Team Orienteering, Competitive Facility-location, and Visualization of Products and Consumers are also discussed. The second volume also includes an introduction to Meta-Analytics, and to the application areas of Fashion and Travel Analytics. Overall, the two-volume set helps to describe some fundamentals, acts as a bridge between different disciplines, and presents important results in a rapidly moving field combining powerful optimization techniques allied to new mathematical models critical for personalization of services. Academics and professionals working in the area of business anyalytics, data science, operations research and marketing will find this handbook valuable as a reference. Students studying these fields will find this handbook useful and helpful as a secondary textbook.