The Koopman Operator in Systems and Control

Download The Koopman Operator in Systems and Control PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030357139
Total Pages : 568 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis The Koopman Operator in Systems and Control by : Alexandre Mauroy

Download or read book The Koopman Operator in Systems and Control written by Alexandre Mauroy and published by Springer Nature. This book was released on 2020-02-22 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.

Modeling and Identification of Linear Parameter-Varying Systems

Download Modeling and Identification of Linear Parameter-Varying Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364213811X
Total Pages : 337 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Modeling and Identification of Linear Parameter-Varying Systems by : Roland Toth

Download or read book Modeling and Identification of Linear Parameter-Varying Systems written by Roland Toth and published by Springer Science & Business Media. This book was released on 2010-06-13 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through the past 20 years, the framework of Linear Parameter-Varying (LPV) systems has become a promising system theoretical approach to h- dle the controlof mildly nonlinear and especially position dependent systems which are common in mechatronic applications and in the process ind- try. The birth of this system class was initiated by the need of engineers to achieve better performance for nonlinear and time-varying dynamics, c- mon in many industrial applications, than what the classical framework of Linear Time-Invariant (LTI) control can provide. However, it was also a p- mary goal to preserve simplicity and “re-use” the powerful LTI results by extending them to the LPV case. The progress continued according to this philosophy and LPV control has become a well established ?eld with many promising applications. Unfortunately, modeling of LPV systems, especially based on measured data (which is called system identi?cation) has seen a limited development sincethebirthoftheframework. Currentlythisbottleneck oftheLPVfra- work is halting the transfer of the LPV theory into industrial use. Without good models that ful?ll the expectations of the users and without the und- standing how these models correspond to the dynamics of the application, it is di?cult to design high performance LPV control solutions. This book aims to bridge the gap between modeling and control by investigating the fundamental questions of LPV modeling and identi?cation. It explores the missing details of the LPV system theory that have hindered the formu- tion of a well established identi?cation framework.

Data-Driven Modeling, Filtering and Control

Download Data-Driven Modeling, Filtering and Control PDF Online Free

Author :
Publisher : Institution of Engineering and Technology
ISBN 13 : 1785617125
Total Pages : 300 pages
Book Rating : 4.7/5 (856 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Modeling, Filtering and Control by : Carlo Novara

Download or read book Data-Driven Modeling, Filtering and Control written by Carlo Novara and published by Institution of Engineering and Technology. This book was released on 2019-07-10 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scientific research in many engineering fields has been shifting from traditional first-principle-based to data-driven or evidence-based theories. The latter methods may enable better system design, based on more accurate and verifiable information.

Automating Data-Driven Modelling of Dynamical Systems

Download Automating Data-Driven Modelling of Dynamical Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030903435
Total Pages : 250 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Automating Data-Driven Modelling of Dynamical Systems by : Dhruv Khandelwal

Download or read book Automating Data-Driven Modelling of Dynamical Systems written by Dhruv Khandelwal and published by Springer Nature. This book was released on 2022-02-03 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user’s perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.

Control of Linear Parameter Varying Systems with Applications

Download Control of Linear Parameter Varying Systems with Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146141833X
Total Pages : 554 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Control of Linear Parameter Varying Systems with Applications by : Javad Mohammadpour

Download or read book Control of Linear Parameter Varying Systems with Applications written by Javad Mohammadpour and published by Springer Science & Business Media. This book was released on 2012-03-08 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control of Linear Parameter Varying Systems compiles state-of-the-art contributions on novel analytical and computational methods for addressing system identification, model reduction, performance analysis and feedback control design and addresses address theoretical developments, novel computational approaches and illustrative applications to various fields. Part I discusses modeling and system identification of linear parameter varying systems, Part II covers the importance of analysis and control design when working with linear parameter varying systems (LPVS) , Finally, Part III presents an applications based approach to linear parameter varying systems, including modeling of a turbocharged diesel engines, Multivariable control of wind turbines, modeling and control of aircraft engines, control of an autonomous underwater vehicles and analysis and synthesis of re-entry vehicles.

Data-Driven Science and Engineering

Download Data-Driven Science and Engineering PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009098489
Total Pages : 615 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton

Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Model Predictive Control in the Process Industry

Download Model Predictive Control in the Process Industry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447130081
Total Pages : 250 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Model Predictive Control in the Process Industry by : Eduardo F. Camacho

Download or read book Model Predictive Control in the Process Industry written by Eduardo F. Camacho and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.

Robust Control and Linear Parameter Varying Approaches

Download Robust Control and Linear Parameter Varying Approaches PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642361102
Total Pages : 402 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Robust Control and Linear Parameter Varying Approaches by : Olivier Sename

Download or read book Robust Control and Linear Parameter Varying Approaches written by Olivier Sename and published by Springer. This book was released on 2013-02-01 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vehicles are complex systems (non-linear, multi-variable) where the abundance of embedded controllers should ensure better security. This book aims at emphasizing the interest and potential of Linear Parameter Varying methods within the framework of vehicle dynamics, e.g. proposed control-oriented model, complex enough to handle some system non linearities but still simple for control or observer design, take into account the adaptability of the vehicle's response to driving situations, to the driver request and/or to the road sollicitations, manage interactions between various actuators to optimize the dynamic behavior of vehicles. This book results from the 32th International Summer School in Automatic that held in Grenoble, France, in September 2011, where recent methods (based on robust control and LPV technics), then applied to the control of vehicle dynamics, have been presented. After some theoretical background and a view on some recent works on LPV approaches (for modelling, analysis, control, observation and diagnosis), the main emphasis is put on road vehicles but some illustrations are concerned with railway, aerospace and underwater vehicles. The main objective of the book is to demonstrate the value of this approach for controlling the dynamic behavior of vehicles. It presents, in a rm way, background and new results on LPV methods and their application to vehicle dynamics.

Data-Driven Iterative Learning Control for Discrete-Time Systems

Download Data-Driven Iterative Learning Control for Discrete-Time Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811959501
Total Pages : 239 pages
Book Rating : 4.8/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Iterative Learning Control for Discrete-Time Systems by : Ronghu Chi

Download or read book Data-Driven Iterative Learning Control for Discrete-Time Systems written by Ronghu Chi and published by Springer Nature. This book was released on 2022-11-15 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book belongs to the subject of control and systems theory. It studies a novel data-driven framework for the design and analysis of iterative learning control (ILC) for nonlinear discrete-time systems. A series of iterative dynamic linearization methods is discussed firstly to build a linear data mapping with respect of the system’s output and input between two consecutive iterations. On this basis, this work presents a series of data-driven ILC (DDILC) approaches with rigorous analysis. After that, this work also conducts significant extensions to the cases with incomplete data information, specified point tracking, higher order law, system constraint, nonrepetitive uncertainty, and event-triggered strategy to facilitate the real applications. The readers can learn the recent progress on DDILC for complex systems in practical applications. This book is intended for academic scholars, engineers, and graduate students who are interested in learning control, adaptive control, nonlinear systems, and related fields.

Model Free Adaptive Control

Download Model Free Adaptive Control PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466594187
Total Pages : 400 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Model Free Adaptive Control by : Zhongsheng Hou

Download or read book Model Free Adaptive Control written by Zhongsheng Hou and published by CRC Press. This book was released on 2013-09-24 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Free Adaptive Control: Theory and Applications summarizes theory and applications of model-free adaptive control (MFAC). MFAC is a novel adaptive control method for the unknown discrete-time nonlinear systems with time-varying parameters and time-varying structure, and the design and analysis of MFAC merely depend on the measured input and output data of the controlled plant, which makes it more applicable for many practical plants. This book covers new concepts, including pseudo partial derivative, pseudo gradient, pseudo Jacobian matrix, and generalized Lipschitz conditions, etc.; dynamic linearization approaches for nonlinear systems, such as compact-form dynamic linearization, partial-form dynamic linearization, and full-form dynamic linearization; a series of control system design methods, including MFAC prototype, model-free adaptive predictive control, model-free adaptive iterative learning control, and the corresponding stability analysis and typical applications in practice. In addition, some other important issues related to MFAC are also discussed. They are the MFAC for complex connected systems, the modularized controller designs between MFAC and other control methods, the robustness of MFAC, and the symmetric similarity for adaptive control system design. The book is written for researchers who are interested in control theory and control engineering, senior undergraduates and graduated students in engineering and applied sciences, as well as professional engineers in process control.

Discrete-Time Adaptive Iterative Learning Control

Download Discrete-Time Adaptive Iterative Learning Control PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811904642
Total Pages : 211 pages
Book Rating : 4.8/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Discrete-Time Adaptive Iterative Learning Control by : Ronghu Chi

Download or read book Discrete-Time Adaptive Iterative Learning Control written by Ronghu Chi and published by Springer Nature. This book was released on 2022-03-21 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book belongs to the subject of control and systems theory. The discrete-time adaptive iterative learning control (DAILC) is discussed as a cutting-edge of ILC and can address random initial states, iteration-varying targets, and other non-repetitive uncertainties in practical applications. This book begins with the design and analysis of model-based DAILC methods by referencing the tools used in the discrete-time adaptive control theory. To overcome the extreme difficulties in modeling a complex system, the data-driven DAILC methods are further discussed by building a linear parametric data mapping between two consecutive iterations. Other significant improvements and extensions of the model-based/data-driven DAILC are also studied to facilitate broader applications. The readers can learn the recent progress on DAILC with consideration of various applications. This book is intended for academic scholars, engineers and graduate students who are interested in learning control, adaptive control, nonlinear systems, and related fields.

Predictive Control

Download Predictive Control PDF Online Free

Author :
Publisher : Pearson Education
ISBN 13 : 9780201398236
Total Pages : 362 pages
Book Rating : 4.3/5 (982 download)

DOWNLOAD NOW!


Book Synopsis Predictive Control by : Jan Marian Maciejowski

Download or read book Predictive Control written by Jan Marian Maciejowski and published by Pearson Education. This book was released on 2002 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model predictive control is an indispensable part of industrial control engineering and is increasingly the "method of choice" for advanced control applications. Jan Maciejowski's book provides a systematic and comprehensive course on predictive control suitable for final year students and professional engineers. The first book to cover constrained predictive control, the text reflects the true use of the topic in industry.

An Introduction to Data-Driven Control Systems

Download An Introduction to Data-Driven Control Systems PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1394196407
Total Pages : 389 pages
Book Rating : 4.3/5 (941 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Data-Driven Control Systems by : Ali Khaki-Sedigh

Download or read book An Introduction to Data-Driven Control Systems written by Ali Khaki-Sedigh and published by John Wiley & Sons. This book was released on 2023-12-19 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Data-Driven Control Systems An introduction to the emerging dominant paradigm in control design Model-based approaches to control systems design have long dominated the control systems design methodologies. However, most models require substantial prior or assumed information regarding the plant’s structure and internal dynamics. The data-driven paradigm in control systems design, which has proliferated rapidly in recent decades, requires only observed input-output data from plants, making it more flexible and broadly applicable. An Introduction to Data-Driven Control Systems provides a foundational overview of data-driven control systems methodologies. It presents key concepts and theories in an accessible way, without the need for the complex mathematics typically associated with technical publications in the field, and raises the important issues involved in applying these approaches. The result is a highly readable introduction to what promises to become the dominant control systems design paradigm. Readers will also find: An overview of philosophical-historical issues accompanying the emergence of data-driven control systems Design analysis of several conventional data-driven control systems design methodologies Algorithms and simulation results, with numerous examples, to facilitate the implementation of methods An Introduction to Data-Driven Control Systems is ideal for students and researchers in control theory or any other research area related to plant design and production.

Dynamic Mode Decomposition

Download Dynamic Mode Decomposition PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611974496
Total Pages : 241 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Mode Decomposition by : J. Nathan Kutz

Download or read book Dynamic Mode Decomposition written by J. Nathan Kutz and published by SIAM. This book was released on 2016-11-23 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.

Dynamic Neural Networks for Robot Systems: Data-Driven and Model-Based Applications

Download Dynamic Neural Networks for Robot Systems: Data-Driven and Model-Based Applications PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2832552013
Total Pages : 301 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Neural Networks for Robot Systems: Data-Driven and Model-Based Applications by : Long Jin

Download or read book Dynamic Neural Networks for Robot Systems: Data-Driven and Model-Based Applications written by Long Jin and published by Frontiers Media SA. This book was released on 2024-07-24 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural network control has been a research hotspot in academic fields due to the strong ability of computation. One of its wildly applied fields is robotics. In recent years, plenty of researchers have devised different types of dynamic neural network (DNN) to address complex control issues in robotics fields in reality. Redundant manipulators are no doubt indispensable devices in industrial production. There are various works on the redundancy resolution of redundant manipulators in performing a given task with the manipulator model information known. However, it becomes knotty for researchers to precisely control redundant manipulators with unknown model to complete a cyclic-motion generation CMG task, to some extent. It is worthwhile to investigate the data-driven scheme and the corresponding novel dynamic neural network (DNN), which exploits learning and control simultaneously. Therefore, it is of great significance to further research the special control features and solve challenging issues to improve control performance from several perspectives, such as accuracy, robustness, and solving speed.

Introduction to Mathematical Systems Theory

Download Introduction to Mathematical Systems Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475729537
Total Pages : 446 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Mathematical Systems Theory by : J.C. Willems

Download or read book Introduction to Mathematical Systems Theory written by J.C. Willems and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using the behavioural approach to mathematical modelling, this book views a system as a dynamical relation between manifest and latent variables. The emphasis is on dynamical systems that are represented by systems of linear constant coefficients. The first part analyses the structure of the set of trajectories generated by such dynamical systems, and derives the conditions for two systems of differential equations to be equivalent in the sense that they define the same behaviour. In addition the memory structure of the system is analysed through state space models. The second part of the book is devoted to a number of important system properties, notably controllability, observability, and stability. In the third part, control problems are considered, in particular stabilisation and pole placement questions. Suitable for advanced undergraduate or beginning graduate students in mathematics and engineering, this text contains numerous exercises, including simulation problems, and examples, notably of mechanical systems and electrical circuits.

System Identification and Adaptive Control

Download System Identification and Adaptive Control PDF Online Free

Author :
Publisher : Springer Science & Business
ISBN 13 : 3319063642
Total Pages : 316 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis System Identification and Adaptive Control by : Yiannis Boutalis

Download or read book System Identification and Adaptive Control written by Yiannis Boutalis and published by Springer Science & Business. This book was released on 2014-04-23 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.