Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Coupled Dipole Approximation And Generalized Multipole Technique In Electromagnetic Scattering
Download Coupled Dipole Approximation And Generalized Multipole Technique In Electromagnetic Scattering full books in PDF, epub, and Kindle. Read online Coupled Dipole Approximation And Generalized Multipole Technique In Electromagnetic Scattering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Light Scattering by Systems of Particles by : Adrian Doicu
Download or read book Light Scattering by Systems of Particles written by Adrian Doicu and published by Springer. This book was released on 2006-10-19 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the theory of the null-field method (also called T-matrix method), covering almost all aspects and current applications. This book also incorporates FORTRAN programs and simulation results. Worked examples of the application of the FORTRAN programs show readers how to adapt or modify the programs for their specific application.
Book Synopsis Scattering, Absorption, and Emission of Light by Small Particles by : Michael I. Mishchenko
Download or read book Scattering, Absorption, and Emission of Light by Small Particles written by Michael I. Mishchenko and published by Cambridge University Press. This book was released on 2002-06-06 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough and up-to-date treatment of electromagnetic scattering by small particles.
Book Synopsis Journal of the Optical Society of America by :
Download or read book Journal of the Optical Society of America written by and published by . This book was released on 2004 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Generalized Lorenz-Mie Theories by : Gérard Gouesbet
Download or read book Generalized Lorenz-Mie Theories written by Gérard Gouesbet and published by Springer. This book was released on 2017-02-22 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores generalized Lorenz–Mie theories when the illuminating beam is an electromagnetic arbitrary shaped beam relying on the method of separation of variables. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly relevant for readers. Although it particularly focuses on the homogeneous sphere, the book also considers other regular particles. It discusses in detail the methods available for evaluating beam shape coefficients describing the illuminating beam. In addition it features applications used in many fields such as optical particle sizing and, more generally, optical particle characterization, morphology-dependent resonances and the mechanical effects of light for optical trapping, optical tweezers and optical stretchers. Furthermore, it provides various computer programs relevant to the content.
Book Synopsis Subwavelength Optics Theory and Technology by : Yongqi Fu
Download or read book Subwavelength Optics Theory and Technology written by Yongqi Fu and published by Bentham Science Publishers. This book was released on 2010-04-21 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: "From the beginning of this century, there has been a dramatic increase in interest in the study of surface plasmon polaritons-based metallic subwavelength structures and learning. This is a refreshing concise book on issues and considerations in designing"
Book Synopsis Generalized Lorenz-Mie Theories by : Gerard Gouesbet
Download or read book Generalized Lorenz-Mie Theories written by Gerard Gouesbet and published by Springer Science & Business Media. This book was released on 2011-02-08 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Lorenz-Mie theory, describing the interaction between a homogeneous sphere and an electromagnetic plane wave, is likely to be one of the most famous theories in light scattering. But, with the advent of lasers and their increasing development in various fields, it has become too old-fashioned to meet most of the modern requisites. The book deals with generalized Lorenz-Mie theories when the illuminating beam is an electromagnetic arbitrary shaped beam, relying on the method of separation of variables. A particular emphasis is stressed on the case of the homogeneous sphere but other regular particles are considered too. An extensive discussion of the methods available to the evaluation of beam shape coefficients describing the illuminating beam is provided, and several methods are discussed. Applications concern many fields such as optical particle sizing and, more generally, optical particle characterization, morphology-dependent resonances, or mechanical effects of light for optical trapping, optical tweezers and optical stretchers. Various computer programs relevant to the contents of the book are furthermore provided.
Download or read book Applied Optics written by and published by . This book was released on 1998 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Nanomaterials Chemistry by : C. N. R. Rao
Download or read book Nanomaterials Chemistry written by C. N. R. Rao and published by John Wiley & Sons. This book was released on 2007-09-24 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this handbook, the distinguished team of editors has combined the expertise of leading nanomaterials scientists to provide the latest overview of this field. They cover the whole spectrum of nanomaterials, ranging from theory, synthesis, properties, characterization to application, including such new developments as quantum dots, nanoparticles, nanoporous materials, nanowires, nanotubes, and nanostructured polymers. The result is recommended reading for everybody working in nanoscience: Newcomers to the field can acquaint themselves with this exciting subject, while specialists will find answers to all their questions as well as helpful suggestions for further research.
Book Synopsis The Method of Moments in Electromagnetics by : Walton C. Gibson
Download or read book The Method of Moments in Electromagnetics written by Walton C. Gibson and published by CRC Press. This book was released on 2021-09-06 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Method of Moments in Electromagnetics, Third Edition details the numerical solution of electromagnetic integral equations via the Method of Moments (MoM). Previous editions focused on the solution of radiation and scattering problems involving conducting, dielectric, and composite objects. This new edition adds a significant amount of material on new, state-of-the art compressive techniques. Included are new chapters on the Adaptive Cross Approximation (ACA) and Multi-Level Adaptive Cross Approximation (MLACA), advanced algorithms that permit a direct solution of the MoM linear system via LU decomposition in compressed form. Significant attention is paid to parallel software implementation of these methods on traditional central processing units (CPUs) as well as new, high performance graphics processing units (GPUs). Existing material on the Fast Multipole Method (FMM) and Multi-Level Fast Multipole Algorithm (MLFMA) is also updated, blending in elements of the ACA algorithm to further reduce their memory demands. The Method of Moments in Electromagnetics is intended for students, researchers, and industry experts working in the area of computational electromagnetics (CEM) and the MoM. Providing a bridge between theory and software implementation, the book incorporates significant background material, while presenting practical, nuts-and-bolts implementation details. It first derives a generalized set of surface integral equations used to treat electromagnetic radiation and scattering problems, for objects comprising conducting and dielectric regions. Subsequent chapters apply these integral equations for progressively more difficult problems such as thin wires, bodies of revolution, and two- and three-dimensional bodies. Radiation and scattering problems of many different types are considered, with numerical results compared against analytical theory as well as measurements.
Book Synopsis Handbook of Molecular Plasmonics by : Fabio Della Sala
Download or read book Handbook of Molecular Plasmonics written by Fabio Della Sala and published by CRC Press. This book was released on 2013-08-13 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: While several reviews and books on surface nanophotonics and fluorescence spectroscopy are available, an updated focus on molecular plasmonics, including both theoretical methods and experimental aspects, is still lacking. This handbook is a comprehensive overview on the physics of the plasmon–emitter interaction, ranging from electromagnetism to quantum mechanics, from metal-enhanced fluorescence to surface-enhanced Raman scattering, from optical microscopy to synthesis of metal nanoparticles, filling the gap in the literature of this merging field. It allows experimentalists to have a solid theoretical reference at a different level of accuracy, and theoreticians to find new stimuli for novel computational methods and emerging applications.
Book Synopsis The Generalized Multipole Technique for Light Scattering by : Thomas Wriedt
Download or read book The Generalized Multipole Technique for Light Scattering written by Thomas Wriedt and published by Springer. This book was released on 2018-03-09 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the Generalized Multipole Technique as a fast and powerful theoretical and computation tool to simulate light scattering by nonspherical particles. It also demonstrates the considerable potential of the method. In recent years, the concept has been applied in new fields, such as simulation of electron energy loss spectroscopy and has been used to extend other methods, like the null-field method, making it more widely applicable. The authors discuss particular implementations of the GMT methods, such as the Discrete Sources Method (DSM), Multiple Multipole Program (MMP), the Method of Auxiliary Sources (MAS), the Filamentary Current Method (FCM), the Method of Fictitious Sources (MFS) and the Null-Field Method with Discrete Sources (NFM-DS). The Generalized Multipole Technique is a surface-based method to find the solution of a boundary-value problem for a given differential equation by expanding the fields in terms of fundamental or other singular solutions of this equation. The amplitudes of these fundamental solutions are determined from the boundary condition at the particle surface. Electromagnetic and light scattering by particles or systems of particles has been the subject of intense research in various scientific and engineering fields, including astronomy, optics, meteorology, remote sensing, optical particle sizing and electromagnetics, which has led to the development of a large number of modelling methods based on the Generalized Multipole Technique for quantitative evaluation of electromagnetic scattering by particles of various shapes and compositions. The book describes these methods in detail.
Book Synopsis Integrated Nanophotonics by : Peng Yu
Download or read book Integrated Nanophotonics written by Peng Yu and published by John Wiley & Sons. This book was released on 2023-05-31 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated Nanophotonics Helps readers understand the important advances in nanophotonics materials development and their latest applications This book introduces the current state of and emerging trends in the development of integrated nanophotonics. Written by three well-qualified authors, it systematically reviews the knowledge of integrated nanophotonics from theory to the most recent technological developments. It also covers the applications of integrated nanophotonics in essential areas such as neuromorphic computing, biosensing, and optical communications. Lastly, it brings together the latest advancements in the key principles of photonic integrated circuits, plus the recent advances in tackling the barriers in photonic integrated circuits. Sample topics included in this comprehensive resource include: Platforms for integrated nanophotonics, including lithium niobate nanophotonics, indium phosphide nanophotonics, silicon nanophotonics, and nonlinear optics for integrated photonics The devices and technologies for integrated nanophotonics in on-chip light sources, optical packaging of photonic integrated circuits, optical interconnects, and light processing devices Applications on neuromorphic computing, biosensing, LIDAR, and computing for AI and artificial neural network and deep learning Materials scientists, physicists, and physical chemists can use this book to understand the totality of cutting-edge theory, research, and applications in the field of integrated nanophotonics.
Book Synopsis Understanding Biophotonics by : Kevin Tsia
Download or read book Understanding Biophotonics written by Kevin Tsia and published by CRC Press. This book was released on 2016-01-05 with total page 757 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biophotonics involves understanding how light interacts with biological matter, from molecules and cells, to tissues and even whole organisms. Light can be used to probe biomolecular events, such as gene expression and protein-protein interaction, with impressively high sensitivity and specificity. The spatial and temporal distribution of biochemic
Book Synopsis Light Scattering by Particles in Water by : Miroslaw Jonasz
Download or read book Light Scattering by Particles in Water written by Miroslaw Jonasz and published by Elsevier. This book was released on 2011-08-29 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: Light scattering-based methods are used to characterize small particles suspended in water in a wide range of disciplines ranging from oceanography, through medicine, to industry. The scope and accuracy of these methods steadily increases with the progress in light scattering research. This book focuses on the theoretical and experimental foundations of the study and modeling of light scattering by particles in water and critically evaluates the key constraints of light scattering models. It begins with a brief review of the relevant theoretical fundamentals of the interaction of light with condensed matter, followed by an extended discussion of the basic optical properties of pure water and seawater and the physical principles that explain them. The book continues with a discussion of key optical features of the pure water/seawater and the most common components of natural waters. In order to clarify and put in focus some of the basic physical principles and most important features of the experimental data on light scattering by particles in water, the authors employ simple models. The book concludes with extensive critical reviews of the experimental constraints of light scattering models: results of measurements of light scattering and of the key properties of the particles: size distribution, refractive index (composition), structure, and shape. These reviews guide the reader through literature scattered among more than 210 scientific journals and periodicals which represent a wide range of disciplines. A special emphasis is put on the methods of measuring both light scattering and the relevant properties of the particles, because principles of these methods may affect interpretation and applicability of the results. The book includes extensive guides to literature on light scattering data and instrumentation design, as well as on the data for size distributions, refractive indices, and shapes typical of particles in natural waters. It also features a comprehensive index, numerous cross-references, and a reference list with over 1370 entries. An errata sheet for this work can be found at: http://www.tpdsci.com/Ref/Jonasz_M_2007_LightScatE.php *Extensive reference section provides handy compilations of knowledge on the designs of light scattering meters, sources of experimental data, and more *Worked exercises and examples throughout
Book Synopsis Electromagnetic Scattering by : Piergiorgio Uslenghi
Download or read book Electromagnetic Scattering written by Piergiorgio Uslenghi and published by Elsevier. This book was released on 2012-12-02 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromagnetic Scattering is a collection of studies that aims to discuss methods, state of the art, applications, and future research in electromagnetic scattering. The book covers topics related to the subject, which includes low-frequency electromagnetic scattering; the uniform asymptomatic theory of electromagnetic edge diffraction; analyses of problems involving high frequency diffraction and imperfect half planes; and multiple scattering of waves by periodic and random distribution. Also covered in this book are topics such as theories of scattering from wire grid and mesh structures; the electromagnetic inverse problem; computational methods for transmission of waves; and developments in the use of complex singularities in the electromagnetic theory. Engineers and physicists who are interested in the study, developments, and applications of electromagnetic scattering will find the text informative and helpful.
Book Synopsis Radiative Processes in Astrophysics by : George B. Rybicki
Download or read book Radiative Processes in Astrophysics written by George B. Rybicki and published by John Wiley & Sons. This book was released on 2008-09-26 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.
Book Synopsis Invariant Imbedding T-matrix Method for Light Scattering by Nonspherical and Inhomogeneous Particles by : Bingqiang Sun
Download or read book Invariant Imbedding T-matrix Method for Light Scattering by Nonspherical and Inhomogeneous Particles written by Bingqiang Sun and published by Elsevier. This book was released on 2019-10-18 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Invariant Imbedding T-matrix Method for Light Scattering by Nonspherical and Inhomogeneous Particles propels atmospheric research forward as a resource and a tool for understanding the T-Matrix method in relation to light scattering. The text explores concepts ranging from electromagnetic waves and scattering dyads to the fundamentals of the T-Matrix method. Providing recently developed material, this text is sufficient to aid the light scattering science community with current and leading information. Enriched with detailed research from top field experts, Invariant Imbedding T-matrix Method for Light Scattering by Nonspherical and Inhomogeneous Particles offers a meaningful and essential presentation of methods and applications, with a focus on the light scattering of small and intermediate particles that supports and builds upon the latest studies. Thus, it is a valuable resource for atmospheric researchers and other earth and environmental scientists to expand their knowledge and understanding of available tools. - Systematically introduces innovative methods with powerful numerical capabilities - Thoroughly presents the rudimentary principles of light scattering and the T-matrix method - Offers a condensed and well-ordered arrangement of text, figures and formulas that are serviceable for both students and researchers