Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Continuum Damage Mechanics Theory And Application
Download Continuum Damage Mechanics Theory And Application full books in PDF, epub, and Kindle. Read online Continuum Damage Mechanics Theory And Application ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Continuum Damage Mechanics Theory and Application by : Dusan Krajcinovic
Download or read book Continuum Damage Mechanics Theory and Application written by Dusan Krajcinovic and published by Springer. This book was released on 2014-05-04 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Continuum Damage Mechanics by : Sumio Murakami
Download or read book Continuum Damage Mechanics written by Sumio Murakami and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application to the modeling of the constitutive and the evolution equations of damaged materials are descried as a systematic basis for the subsequent development throughout the book. Part II describes the application of the fundamental theories developed in Part I to typical damage and fracture problems encountered in various fields of the current engineering. Important engineering aspects of elastic-plastic or ductile damage, their damage mechanics modeling and their further refinement are first discussed in Chapter 6. Chapters 7 and 8 are concerned with the modeling of fatigue, creep, creep-fatigue and their engineering application. Damage mechanics modeling of complicated crack closure behavior in elastic-brittle and composite materials are discussed in Chapters 9 and 10. In Chapter 11, applicability of the local approach to fracture by means of damage mechanics and finite element method, and the ensuing mathematical and numerical problems are briefly discussed. A proper understanding of the subject matter requires knowledge of tensor algebra and tensor calculus. At the end of this book, therefore, the foundations of tensor analysis are presented in the Appendix, especially for readers with insufficient mathematical background, but with keen interest in this exciting field of mechanics.
Book Synopsis Continuum Damage Mechanics and Numerical Applications by : Wohua Zhang
Download or read book Continuum Damage Mechanics and Numerical Applications written by Wohua Zhang and published by Springer Science & Business Media. This book was released on 2010-11-19 with total page 937 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Continuum Damage Mechanics and Numerical Applications" presents a systematic development of the theory of Continuum Damage Mechanics and its numerical engineering applications using a unified form of the mathematical formulations in anisotropic and isotropic damage models. The theoretical framework is based on the thermodynamic theory of energy and material dissipation and is described by a set of fundamental formulations of constitutive equations of damaged materials, development equations of the damaged state, and evolution equations of micro-structures. According to concepts of damage-dissipation of the material state and effective evolution of material properties, all these advanced equations, which take nonsymmetrized effects of damage aspects into account, are developed and modified from the traditional general failure models so they are more easily applied and verified in a wide range of engineering practices by experimental testing. Dr. Wohua Zhang is a Professor at Engineering Mechanics Research Center in Zhejiang University of China. Dr. Yuanqiang Cai is a Professor at Department of Civil Engineering in Zhejiang University of China.
Book Synopsis Introduction to continuum damage mechanics by : L. Kachanov
Download or read book Introduction to continuum damage mechanics written by L. Kachanov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern engineering materials subjected to unfavorable mechanical and environmental conditions decrease in strength due to the accumulation of microstructural changes. For example, considering damage in metals we can mention creep damage, ductile plastic damage, embrittlement of steels and fatigue damage. To properly estimate the value of damage when designing reliable structures it is necessary to formulate the damage phenomenon in terms of mechanics. Then it is possible to analyse various engineering problems using analytical and computational techniques. During the last two decades the basic principles of continuum damage mechanics were formulated and some special problems were solved. Many scientific papers were published and several conferences on damage mechanics took place. Now continuum damage mechanics is rapidly developing branch of fracture mechanics. This book is probably the first one on the subject; it contains a sys tematic description of the basic aspects of damage mechanics and some of its applications. In general, a theoretical description of damage can be rather compli cated. The experiments in this field are difficult (especially under multiax ial stress and non-proportional loading). Therefore, experimental data, as a rule, are scarce. Determination of functions and constants, which play a role in the complex variants of the theory, from available experimental data is often practically impossible. ix L.M. Kachanov The problems of damage mechanics are mainly engineering ones. Therefore, the author tries to avoid superfluous mathematical formalism. Some more details of the book's subject can be found in the list of con tents.
Book Synopsis Continuum Damage and Fracture Mechanics by : Andreas Öchsner
Download or read book Continuum Damage and Fracture Mechanics written by Andreas Öchsner and published by Springer. This book was released on 2015-10-15 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers readers an introduction to fracture mechanics, equipping them to grasp the basic ideas of the presented approaches to modeling in applied mechanics In the first part, the book reviews and expands on the classical theory of elastic and elasto-plastic material behavior. A solid understanding of these two topics is the essential prerequisite to advancing to damage and fracture mechanics. Thus, the second part of this course provides an introduction to the treatment of damage and fractures in the context of applied mechanics Wherever possible, the one-dimensional case is first introduced and then generalized in a following step. This departs somewhat from the more classical approach, where first the most general case is derived and then simplified to special cases. In general, the required mathematics background is kept to a minimum Tutorials are included at the end of each chapter, presenting the major steps for the solution and offering valuable tips and tricks. The supplementary problems featured in the book
Book Synopsis A Course on Damage Mechanics by : Jean Lemaitre
Download or read book A Course on Damage Mechanics written by Jean Lemaitre and published by Springer Science & Business Media. This book was released on 2013-12-14 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new branch of science usually develops thus. Somebody publishes the basic ideas. Hesitatingly at first, then little by little, other original contributions appear, until a certain threshold is reached. Then, overview articles are printed, conferences are held, and a first mention is made in textbooks, until specialized monographs are written. Continuum darnage mechanics has reached that status now. To analyze or, if possible, to predict the failure of machine parts or other structures is one of the main goals of engineering science. Consequently fracture mechanics became one of its leading branches. It was based on the analysis of existing cracks. However, especially under conditions of cyclic loading, this might be too late to prevent a disaster. Therefore, the question regarding the precursory state, that is, the evolution of intemal darnage before macrocracks become visible, was then posed. One of the successful approaches to the problern was Weibull's theory which examined, in a statistical manner, the "weakest link" in the material volume under consideration. Unfortunately it proved too difficult mathematically to be applied to complicated parts or structures. Therefore it was highly appreciated by the scientific of material community when L. M. Kachanov published in 1958 a simple model darnage which subsequently could be extended to brittle elastic, plastic or viscous materials under all conditions of uniaxial or multiaxial, simple or cyclic loadings, so that it may be considered nearly universal.
Book Synopsis Modeling of Material Damage and Failure of Structures by : Jacek J. Skrzypek
Download or read book Modeling of Material Damage and Failure of Structures written by Jacek J. Skrzypek and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extensive and comprehensive survey of one- and three-dimensional damage models for elastic and inelastic solids. The book not only provides a rich current source of knowledge, but also describes examples of practical applications, numerical procedures, and computer codes. The style throughout is systematic, clear, and concise, and supported by illustrative diagrams. The state of the art is given by some 200 references.
Book Synopsis Engineering Damage Mechanics by : Jean Lemaitre
Download or read book Engineering Damage Mechanics written by Jean Lemaitre and published by Springer Science & Business Media. This book was released on 2006-01-16 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reflecting his major contributions to the field, Jean Lemaitre’s "Engineering Damage Mechanics" presents simplified and advanced methods organized within a unified framework for designers of any mechanical component. Explains how to apply continuous damage mechanics to failures of mechanical and civil engineering components in ductile, creep, fatigue and brittle conditions. Incorporates many basic examples, while emphasizing key practical considerations such as material parameter identification, and provides perspective on the advantage and disadvantages of various approaches.
Book Synopsis Continuum Mechanics Modeling of Material Behavior by : Martin H. Sadd
Download or read book Continuum Mechanics Modeling of Material Behavior written by Martin H. Sadd and published by Academic Press. This book was released on 2018-03-31 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuum Mechanics Modeling of Material Behavior offers a uniquely comprehensive introduction to topics like RVE theory, fabric tensor models, micropolar elasticity, elasticity with voids, nonlocal higher gradient elasticity and damage mechanics. Contemporary continuum mechanics research has been moving into areas of complex material microstructural behavior. Graduate students who are expected to do this type of research need a fundamental background beyond classical continuum theories. The book begins with several chapters that carefully and rigorously present mathematical preliminaries: kinematics of motion and deformation; force and stress measures; and general principles of mass, momentum and energy balance. The book then moves beyond other books by dedicating several chapters to constitutive equation development, exploring a wide collection of constitutive relations and developing the corresponding material model formulations. Such material behavior models include classical linear theories of elasticity, fluid mechanics, viscoelasticity and plasticity. Linear multiple field problems of thermoelasticity, poroelasticity and electoelasticity are also presented. Discussion of nonlinear theories of solids and fluids, including finite elasticity, nonlinear/non-Newtonian viscous fluids, and nonlinear viscoelastic materials are also given. Finally, several relatively new continuum theories based on incorporation of material microstructure are presented including: fabric tensor theories, micropolar elasticity, elasticity with voids, nonlocal higher gradient elasticity and damage mechanics. - Offers a thorough, concise and organized presentation of continuum mechanics formulation - Covers numerous applications in areas of contemporary continuum mechanics modeling, including micromechanical and multi-scale problems - Integration and use of MATLAB software gives students more tools to solve, evaluate and plot problems under study - Features extensive use of exercises, providing more material for student engagement and instructor presentation
Book Synopsis Computational Methods for Plasticity by : Eduardo A. de Souza Neto
Download or read book Computational Methods for Plasticity written by Eduardo A. de Souza Neto and published by John Wiley & Sons. This book was released on 2011-09-21 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of computational plasticity encapsulates the numerical methods used for the finite element simulation of the behaviour of a wide range of engineering materials considered to be plastic – i.e. those that undergo a permanent change of shape in response to an applied force. Computational Methods for Plasticity: Theory and Applications describes the theory of the associated numerical methods for the simulation of a wide range of plastic engineering materials; from the simplest infinitesimal plasticity theory to more complex damage mechanics and finite strain crystal plasticity models. It is split into three parts - basic concepts, small strains and large strains. Beginning with elementary theory and progressing to advanced, complex theory and computer implementation, it is suitable for use at both introductory and advanced levels. The book: Offers a self-contained text that allows the reader to learn computational plasticity theory and its implementation from one volume. Includes many numerical examples that illustrate the application of the methodologies described. Provides introductory material on related disciplines and procedures such as tensor analysis, continuum mechanics and finite elements for non-linear solid mechanics. Is accompanied by purpose-developed finite element software that illustrates many of the techniques discussed in the text, downloadable from the book’s companion website. This comprehensive text will appeal to postgraduate and graduate students of civil, mechanical, aerospace and materials engineering as well as applied mathematics and courses with computational mechanics components. It will also be of interest to research engineers, scientists and software developers working in the field of computational solid mechanics.
Book Synopsis Mechanics of Fatigue by : Vladimir V. Bolotin
Download or read book Mechanics of Fatigue written by Vladimir V. Bolotin and published by CRC Press. This book was released on 1999-06-24 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanics of Fatigue addresses the range of topics concerning damage, fatigue, and fracture of engineering materials and structures. The core of this resource builds upon the synthesis of micro- and macro-mechanics of fracture. In micromechanics, both the modeling of mechanical phenomena on the level of material structure and the continuous approach are based on the use of certain internal field parameters characterizing the dispersed micro-damage. This is referred to as continuum damage mechanics. The author develops his own theory for macromechanics, called analytical fracture mechanics. This term means the system cracked body - loading or loading device - is considered as a mechanical system and the tools of analytical (rational) mechanics are applied thoroughly to describe crack propagation until the final failure. Chapter discuss: preliminary information on fatigue and engineering methods for design of machines and structures against failures caused by fatigue fatigue crack nucleation, including microstructural and continuous models theory of fatigue crack propagation fatigue crack growth in linear elastic materials subject to dispersed damage fatigue cracks in elasto-plastic material, including crack growth retardation due to overloading as well as quasistationary approximation fatigue and related phenomena in hereditary solids application of the theory fatigue crack growth considering environmental factors unidirectional fiber composites with ductile matrix and brittle, initially continuous fibers laminate composites Mechanics of Fatigue serves students dealing with mechanical aspects of fatigue, conducting research in fracture mechanics, structural safety, mechanics of composites, as well as modern branches of mechanics of solids and structures.
Book Synopsis Mechanics of Solid Materials by : Jean Lemaitre
Download or read book Mechanics of Solid Materials written by Jean Lemaitre and published by Cambridge University Press. This book was released on 1994-08-25 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Translation of hugely successful book aimed at advanced undergraduates, graduate students and researchers.
Book Synopsis Continuum Damage Mechanics by : Sumio Murakami
Download or read book Continuum Damage Mechanics written by Sumio Murakami and published by Springer Science & Business Media. This book was released on 2012-02-23 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application to the modeling of the constitutive and the evolution equations of damaged materials are descried as a systematic basis for the subsequent development throughout the book. Part II describes the application of the fundamental theories developed in Part I to typical damage and fracture problems encountered in various fields of the current engineering. Important engineering aspects of elastic-plastic or ductile damage, their damage mechanics modeling and their further refinement are first discussed in Chapter 6. Chapters 7 and 8 are concerned with the modeling of fatigue, creep, creep-fatigue and their engineering application. Damage mechanics modeling of complicated crack closure behavior in elastic-brittle and composite materials are discussed in Chapters 9 and 10. In Chapter 11, applicability of the local approach to fracture by means of damage mechanics and finite element method, and the ensuing mathematical and numerical problems are briefly discussed. A proper understanding of the subject matter requires knowledge of tensor algebra and tensor calculus. At the end of this book, therefore, the foundations of tensor analysis are presented in the Appendix, especially for readers with insufficient mathematical background, but with keen interest in this exciting field of mechanics.
Book Synopsis Nonlinear Solid Mechanics by : Gerhard A. Holzapfel
Download or read book Nonlinear Solid Mechanics written by Gerhard A. Holzapfel and published by . This book was released on 2000-04-06 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a modern and comprehensive coverage of continuum mechanics, this volume includes information on "variational principles"--Significant, as this is the only method by which such material is actually utilized in engineering practice.
Book Synopsis Handbook of Damage Mechanics by : George Z. Voyiadjis
Download or read book Handbook of Damage Mechanics written by George Z. Voyiadjis and published by Springer. This book was released on 2014-10-14 with total page 1579 pages. Available in PDF, EPUB and Kindle. Book excerpt: This authoritative reference provides comprehensive coverage of the topics of damage and healing mechanics. Computational modeling of constitutive equations is provided as well as solved examples in engineering applications. A wide range of materials that engineers may encounter are covered, including metals, composites, ceramics, polymers, biomaterials, and nanomaterials. The internationally recognized team of contributors employ a consistent and systematic approach, offering readers a user-friendly reference that is ideal for frequent consultation. Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures is ideal for graduate students and faculty, researchers, and professionals in the fields of Mechanical Engineering, Civil Engineering, Aerospace Engineering, Materials Science, and Engineering Mechanics.
Book Synopsis Handbook of Nonlocal Continuum Mechanics for Materials and Structures by : George Z. Voyiadjis
Download or read book Handbook of Nonlocal Continuum Mechanics for Materials and Structures written by George Z. Voyiadjis and published by Springer. This book was released on 2019-02-22 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook covers all areas of nonlocal continuum mechanics including theoretical aspects,computational procedures, and experimental advances. The multidisciplinary scope of articles that comprise this reference are written by internationally recognized experts in the field and stand as the most-up-to-date, established knowledge base on using nonlocal continuum mechanics to characterize material behavior for advanced composites and nano-materials, as well as for engineering scale structures. The handbook is at once a comprehensive reference for academic researchers and engineers in industry concerned with nonlocal continuum mechanics for materials and structures as well as a supplement for graduate courses on a range of topics.
Book Synopsis Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications by : Xinpu Shen
Download or read book Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications written by Xinpu Shen and published by CRC Press. This book was released on 2017-03-27 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.