Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Continuation Methods In Fluid Dynamics
Download Continuation Methods In Fluid Dynamics full books in PDF, epub, and Kindle. Read online Continuation Methods In Fluid Dynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Continuation Methods in Fluid Dynamics by : Daniel Henry
Download or read book Continuation Methods in Fluid Dynamics written by Daniel Henry and published by . This book was released on 2000 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introduction to Numerical Continuation Methods by : Eugene L. Allgower
Download or read book Introduction to Numerical Continuation Methods written by Eugene L. Allgower and published by SIAM. This book was released on 2003-01-01 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. The book also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals. To help potential users of numerical continuation methods create programs adapted to their particular needs, this book presents pseudo-codes and Fortran codes as illustrations. Since it first appeared, many specialized packages for treating such varied problems as bifurcation, polynomial systems, eigenvalues, economic equilibria, optimization, and the approximation of manifolds have been written. The original extensive bibliography has been updated in the SIAM Classics edition to include more recent references and several URLs so users can look for codes to suit their needs. Audience: this book continues to be useful for researchers and graduate students in mathematics, sciences, engineering, economics, and business. A background in elementary analysis and linear algebra are adequate prerequisites for reading this book; some knowledge from a first course in numerical analysis may also be helpful.
Book Synopsis Numerical Continuation Methods by : Eugene L. Allgower
Download or read book Numerical Continuation Methods written by Eugene L. Allgower and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.
Book Synopsis Adaptive High-order Methods in Computational Fluid Dynamics by : Z. J. Wang
Download or read book Adaptive High-order Methods in Computational Fluid Dynamics written by Z. J. Wang and published by World Scientific. This book was released on 2011 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of important contributions by world-renowned experts on adaptive high-order methods in computational fluid dynamics (CFD). It covers several widely used, and still intensively researched methods, including the discontinuous Galerkin, residual distribution, finite volume, differential quadrature, spectral volume, spectral difference, PNPM, and correction procedure via reconstruction methods. The main focus is applications in aerospace engineering, but the book should also be useful in many other engineering disciplines including mechanical, chemical and electrical engineering. Since many of these methods are still evolving, the book will be an excellent reference for researchers and graduate students to gain an understanding of the state of the art and remaining challenges in high-order CFD methods.
Book Synopsis The Finite Element Method in Heat Transfer and Fluid Dynamics, Second Edition by : J. N. Reddy
Download or read book The Finite Element Method in Heat Transfer and Fluid Dynamics, Second Edition written by J. N. Reddy and published by CRC Press. This book was released on 2000-12-20 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical simulation of fluid mechanics and heat transfer problems is now a standard part of engineering practice. The widespread availability of capable computing hardware has led to an increased demand for computer simulations of products and processes during their engineering design and manufacturing phases. The range of fluid mechanics and heat transfer applications of finite element analysis has become quite remarkable, with complex, realistic simulations being carried out on a routine basis. The award-winning first edition of The Finite Element Method in Heat Transfer and Fluid Dynamics brought this powerful methodology to those interested in applying it to the significant class of problems dealing with heat conduction, incompressible viscous flows, and convection heat transfer. The Second Edition of this bestselling text continues to provide the academic community and industry with up-to-date, authoritative information on the use of the finite element method in the study of fluid mechanics and heat transfer. Extensively revised and thoroughly updated, new and expanded material includes discussions on difficult boundary conditions, contact and bulk nodes, change of phase, weighted-integral statements and weak forms, chemically reactive systems, stabilized methods, free surface problems, and much more. The Finite Element Method in Heat Transfer and Fluid Dynamics offers students a pragmatic treatment that views numerical computation as a means to an end and does not dwell on theory or proof. Mastering its contents brings a firm understanding of the basic methodology, competence in using existing simulation software, and the ability to develop some simpler, special purpose computer codes.
Book Synopsis Numerical Methods for Bifurcations of Dynamical Equilibria by : Willy J. F. Govaerts
Download or read book Numerical Methods for Bifurcations of Dynamical Equilibria written by Willy J. F. Govaerts and published by SIAM. This book was released on 2000-01-01 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical systems arise in all fields of applied mathematics. The author focuses on the description of numerical methods for the detection, computation, and continuation of equilibria and bifurcation points of equilibria of dynamical systems. This subfield has the particular attraction of having links with the geometric theory of differential equations, numerical analysis, and linear algebra.
Book Synopsis The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition by : J. N. Reddy
Download or read book The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition written by J. N. Reddy and published by CRC Press. This book was released on 2010-04-06 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures—particularly the Finite Element Method (FEM)—to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer. This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions’ key material and popular style in regard to text organization, equation numbering, references, and symbols. This updated third edition features new or extended coverage of: Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.
Book Synopsis Numerical Methods for Fluid Dynamics V by : K. W. Morton
Download or read book Numerical Methods for Fluid Dynamics V written by K. W. Morton and published by Oxford University Press. This book was released on 1995 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of an international conference on Numerical Methods for Fluid Dynamics held at the University of Oxford in April 1995. It provides a summary of recent research on the computational aspects of fluid dynamics. It includes contributions from many distinguished mathematicians and engineers and, as always, the standard of papers is high. The main themes of the book are algorithms and algorithmic needs arising from applications, Navier-Stokes on flexible grids, and environmental computational fluid dynamics. Graduate students of numerical analysis will find the up-to-date coverage of research in this book very useful.
Book Synopsis Numerical Continuation Methods for Dynamical Systems by : Bernd Krauskopf
Download or read book Numerical Continuation Methods for Dynamical Systems written by Bernd Krauskopf and published by Springer. This book was released on 2007-11-06 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.
Book Synopsis Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics by : Alexander Gelfgat
Download or read book Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics written by Alexander Gelfgat and published by Springer. This book was released on 2018-07-06 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Instabilities of fluid flows and the associated transitions between different possible flow states provide a fascinating set of problems that have attracted researchers for over a hundred years. This book addresses state-of-the-art developments in numerical techniques for computational modelling of fluid instabilities and related bifurcation structures, as well as providing comprehensive reviews of recently solved challenging problems in the field.
Author :Venkataramana Ajjarapu Publisher :Springer Science & Business Media ISBN 13 :0387329358 Total Pages :257 pages Book Rating :4.3/5 (873 download)
Book Synopsis Computational Techniques for Voltage Stability Assessment and Control by : Venkataramana Ajjarapu
Download or read book Computational Techniques for Voltage Stability Assessment and Control written by Venkataramana Ajjarapu and published by Springer Science & Business Media. This book was released on 2007-05-27 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive details on continuation power flow, and reviews concepts in bifurcation theory and continuation methods for assessing power system voltage stability. The author proposes a uniform framework that provides computational approaches for both short-term and long-term voltage stability phenomena. Readers can access the author’s web-based simulation tools, which are based on the advice in this book, to simulate tests of systems up to the size of 200 busses.
Book Synopsis Handbook of Numerical Analysis by : Philippe G. Ciarlet
Download or read book Handbook of Numerical Analysis written by Philippe G. Ciarlet and published by Gulf Professional Publishing. This book was released on 1990 with total page 1187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes following subjects: Solution of equations in Rn, Finite difference methods, Finite element methods, Techniques of scientific computing, Optimization theory and systems science, Numerical methods for fluids, Numerical methods for solids, Specific applications
Book Synopsis Numerical Simulation in Fluid Dynamics by : Michael Griebel
Download or read book Numerical Simulation in Fluid Dynamics written by Michael Griebel and published by SIAM. This book was released on 1998-01-01 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this translation of the German edition, the authors provide insight into the numerical simulation of fluid flow. Using a simple numerical method as an expository example, the individual steps of scientific computing are presented: the derivation of the mathematical model; the discretization of the model equations; the development of algorithms; parallelization; and visualization of the computed data. In addition to the treatment of the basic equations for modeling laminar, transient flow of viscous, incompressible fluids - the Navier-Stokes equations - the authors look at the simulation of free surface flows; energy and chemical transport; and turbulence. Readers are enabled to write their own flow simulation program from scratch. The variety of applications is shown in several simulation results, including 92 black-and-white and 18 color illustrations. After reading this book, readers should be able to understand more enhanced algorithms of computational fluid dynamics and apply their new knowledge to other scientific fields.
Book Synopsis Numerical Methods in Fluid Dynamics by : Franco Brezzi
Download or read book Numerical Methods in Fluid Dynamics written by Franco Brezzi and published by Springer. This book was released on 2006-11-14 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Sixteenth International Conference on Numerical Methods in Fluid Dynamics by : Charles-Henri Bruneau
Download or read book Sixteenth International Conference on Numerical Methods in Fluid Dynamics written by Charles-Henri Bruneau and published by Springer. This book was released on 1998-11-26 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a wide area of topics, from fundamental theories to industrial applications. It serves as a useful reference for all interested in computational modeling of partial differential equations pertinent primarily to aeronautical applications. The reader will find five survey articles on cartesian mesh methods, on numerical studies of turbulent boundary layers, on efficient computation of compressible flows, on the use of Riemann-solvers and on numerical procedures in complex flows.
Book Synopsis Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis by : Adrian Constantin
Download or read book Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis written by Adrian Constantin and published by SIAM. This book was released on 2011-01-01 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This overview of some of the main results and recent developments in nonlinear water waves presents fundamental aspects of the field and discusses several important topics of current research interest. It contains selected information about water-wave motion for which advanced mathematical study can be pursued, enabling readers to derive conclusions that explain observed phenomena to the greatest extent possible. The author discusses the underlying physical factors of such waves and explores the physical relevance of the mathematical results that are presented. The material is an expanded version of the author's lectures delivered at the NSF-CBMS Regional Research Conference in the Mathematical Sciences organized by the Mathematics Department of the University of Texas-Pan American in 2010.
Book Synopsis Fundamentals of Engineering Numerical Analysis by : Parviz Moin
Download or read book Fundamentals of Engineering Numerical Analysis written by Parviz Moin and published by Cambridge University Press. This book was released on 2010-08-23 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.