Conformal Prediction for Reliable Machine Learning

Download Conformal Prediction for Reliable Machine Learning PDF Online Free

Author :
Publisher : Newnes
ISBN 13 : 0124017150
Total Pages : 323 pages
Book Rating : 4.1/5 (24 download)

DOWNLOAD NOW!


Book Synopsis Conformal Prediction for Reliable Machine Learning by : Vineeth Balasubramanian

Download or read book Conformal Prediction for Reliable Machine Learning written by Vineeth Balasubramanian and published by Newnes. This book was released on 2014-04-23 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection

Algorithmic Learning in a Random World

Download Algorithmic Learning in a Random World PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387001524
Total Pages : 344 pages
Book Rating : 4.0/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Algorithmic Learning in a Random World by : Vladimir Vovk

Download or read book Algorithmic Learning in a Random World written by Vladimir Vovk and published by Springer Science & Business Media. This book was released on 2005-03-22 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.

Conformal and Probabilistic Prediction with Applications

Download Conformal and Probabilistic Prediction with Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331933395X
Total Pages : 235 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Conformal and Probabilistic Prediction with Applications by : Alexander Gammerman

Download or read book Conformal and Probabilistic Prediction with Applications written by Alexander Gammerman and published by Springer. This book was released on 2016-04-16 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th International Symposium on Conformal and Probabilistic Prediction with Applications, COPA 2016, held in Madrid, Spain, in April 2016. The 14 revised full papers presented together with 1 invited paper were carefully reviewed and selected from 23 submissions and cover topics on theory of conformal prediction; applications of conformal prediction; and machine learning.

Functional and High-Dimensional Statistics and Related Fields

Download Functional and High-Dimensional Statistics and Related Fields PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030477568
Total Pages : 254 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Functional and High-Dimensional Statistics and Related Fields by : Germán Aneiros

Download or read book Functional and High-Dimensional Statistics and Related Fields written by Germán Aneiros and published by Springer Nature. This book was released on 2020-06-19 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest research on the statistical analysis of functional, high-dimensional and other complex data, addressing methodological and computational aspects, as well as real-world applications. It covers topics like classification, confidence bands, density estimation, depth, diagnostic tests, dimension reduction, estimation on manifolds, high- and infinite-dimensional statistics, inference on functional data, networks, operatorial statistics, prediction, regression, robustness, sequential learning, small-ball probability, smoothing, spatial data, testing, and topological object data analysis, and includes applications in automobile engineering, criminology, drawing recognition, economics, environmetrics, medicine, mobile phone data, spectrometrics and urban environments. The book gathers selected, refereed contributions presented at the Fifth International Workshop on Functional and Operatorial Statistics (IWFOS) in Brno, Czech Republic. The workshop was originally to be held on June 24-26, 2020, but had to be postponed as a consequence of the COVID-19 pandemic. Initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008, the IWFOS workshops provide a forum to discuss the latest trends and advances in functional statistics and related fields, and foster the exchange of ideas and international collaboration in the field.

Dataset Shift in Machine Learning

Download Dataset Shift in Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262170051
Total Pages : 246 pages
Book Rating : 4.2/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Dataset Shift in Machine Learning by : Joaquin Quinonero-Candela

Download or read book Dataset Shift in Machine Learning written by Joaquin Quinonero-Candela and published by MIT Press. This book was released on 2008-12-12 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of recent efforts in the machine learning community to deal with dataset and covariate shift, which occurs when test and training inputs and outputs have different distributions. Dataset shift is a common problem in predictive modeling that occurs when the joint distribution of inputs and outputs differs between training and test stages. Covariate shift, a particular case of dataset shift, occurs when only the input distribution changes. Dataset shift is present in most practical applications, for reasons ranging from the bias introduced by experimental design to the irreproducibility of the testing conditions at training time. (An example is -email spam filtering, which may fail to recognize spam that differs in form from the spam the automatic filter has been built on.) Despite this, and despite the attention given to the apparently similar problems of semi-supervised learning and active learning, dataset shift has received relatively little attention in the machine learning community until recently. This volume offers an overview of current efforts to deal with dataset and covariate shift. The chapters offer a mathematical and philosophical introduction to the problem, place dataset shift in relationship to transfer learning, transduction, local learning, active learning, and semi-supervised learning, provide theoretical views of dataset and covariate shift (including decision theoretic and Bayesian perspectives), and present algorithms for covariate shift. Contributors Shai Ben-David, Steffen Bickel, Karsten Borgwardt, Michael Brückner, David Corfield, Amir Globerson, Arthur Gretton, Lars Kai Hansen, Matthias Hein, Jiayuan Huang, Choon Hui Teo, Takafumi Kanamori, Klaus-Robert Müller, Sam Roweis, Neil Rubens, Tobias Scheffer, Marcel Schmittfull, Bernhard Schölkopf Hidetoshi Shimodaira, Alex Smola, Amos Storkey, Masashi Sugiyama

Statistical Learning and Data Science

Download Statistical Learning and Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 143986764X
Total Pages : 242 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Statistical Learning and Data Science by : Mireille Gettler Summa

Download or read book Statistical Learning and Data Science written by Mireille Gettler Summa and published by CRC Press. This book was released on 2011-12-19 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data analysis is changing fast. Driven by a vast range of application domains and affordable tools, machine learning has become mainstream. Unsupervised data analysis, including cluster analysis, factor analysis, and low dimensionality mapping methods continually being updated, have reached new heights of achievement in the incredibly rich data wor

Cycles of Time

Download Cycles of Time PDF Online Free

Author :
Publisher : Vintage
ISBN 13 : 0307596745
Total Pages : 307 pages
Book Rating : 4.3/5 (75 download)

DOWNLOAD NOW!


Book Synopsis Cycles of Time by : Roger Penrose

Download or read book Cycles of Time written by Roger Penrose and published by Vintage. This book was released on 2011-09-06 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: From Nobel prize-winner Roger Penrose, this groundbreaking book is for anyone "who is interested in the world, how it works, and how it got here" (New York Journal of Books). Penrose presents a new perspective on three of cosmology’s essential questions: What came before the Big Bang? What is the source of order in our universe? And what cosmic future awaits us? He shows how the expected fate of our ever-accelerating and expanding universe—heat death or ultimate entropy—can actually be reinterpreted as the conditions that will begin a new “Big Bang.” He details the basic principles beneath our universe, explaining various standard and non-standard cosmological models, the fundamental role of the cosmic microwave background, the paramount significance of black holes, and other basic building blocks of contemporary physics. Intellectually thrilling and widely accessible, Cycles of Time is a welcome new contribution to our understanding of the universe from one of our greatest mathematicians and thinkers.

Time Series Prediction

Download Time Series Prediction PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 042997227X
Total Pages : 665 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Time Series Prediction by : Andreas S. Weigend

Download or read book Time Series Prediction written by Andreas S. Weigend and published by Routledge. This book was released on 2018-05-04 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a summary of a time series forecasting competition that was held a number of years ago. It aims to provide a snapshot of the range of new techniques that are used to study time series, both as a reference for experts and as a guide for novices.

Probability and Finance

Download Probability and Finance PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471461717
Total Pages : 438 pages
Book Rating : 4.4/5 (714 download)

DOWNLOAD NOW!


Book Synopsis Probability and Finance by : Glenn Shafer

Download or read book Probability and Finance written by Glenn Shafer and published by John Wiley & Sons. This book was released on 2005-02-25 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a foundation for probability based on game theory rather than measure theory. A strong philosophical approach with practical applications. Presents in-depth coverage of classical probability theory as well as new theory.

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Probabilistic Machine Learning

Download Probabilistic Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262369303
Total Pages : 858 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Machine Learning by : Kevin P. Murphy

Download or read book Probabilistic Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2022-03-01 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.

Game-Theoretic Foundations for Probability and Finance

Download Game-Theoretic Foundations for Probability and Finance PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118547934
Total Pages : 483 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Game-Theoretic Foundations for Probability and Finance by : Glenn Shafer

Download or read book Game-Theoretic Foundations for Probability and Finance written by Glenn Shafer and published by John Wiley & Sons. This book was released on 2019-03-21 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Game-theoretic probability and finance come of age Glenn Shafer and Vladimir Vovk’s Probability and Finance, published in 2001, showed that perfect-information games can be used to define mathematical probability. Based on fifteen years of further research, Game-Theoretic Foundations for Probability and Finance presents a mature view of the foundational role game theory can play. Its account of probability theory opens the way to new methods of prediction and testing and makes many statistical methods more transparent and widely usable. Its contributions to finance theory include purely game-theoretic accounts of Ito’s stochastic calculus, the capital asset pricing model, the equity premium, and portfolio theory. Game-Theoretic Foundations for Probability and Finance is a book of research. It is also a teaching resource. Each chapter is supplemented with carefully designed exercises and notes relating the new theory to its historical context. Praise from early readers “Ever since Kolmogorov's Grundbegriffe, the standard mathematical treatment of probability theory has been measure-theoretic. In this ground-breaking work, Shafer and Vovk give a game-theoretic foundation instead. While being just as rigorous, the game-theoretic approach allows for vast and useful generalizations of classical measure-theoretic results, while also giving rise to new, radical ideas for prediction, statistics and mathematical finance without stochastic assumptions. The authors set out their theory in great detail, resulting in what is definitely one of the most important books on the foundations of probability to have appeared in the last few decades.” – Peter Grünwald, CWI and University of Leiden “Shafer and Vovk have thoroughly re-written their 2001 book on the game-theoretic foundations for probability and for finance. They have included an account of the tremendous growth that has occurred since, in the game-theoretic and pathwise approaches to stochastic analysis and in their applications to continuous-time finance. This new book will undoubtedly spur a better understanding of the foundations of these very important fields, and we should all be grateful to its authors.” – Ioannis Karatzas, Columbia University

Probably Approximately Correct

Download Probably Approximately Correct PDF Online Free

Author :
Publisher : Basic Books (AZ)
ISBN 13 : 0465032710
Total Pages : 210 pages
Book Rating : 4.4/5 (65 download)

DOWNLOAD NOW!


Book Synopsis Probably Approximately Correct by : Leslie Valiant

Download or read book Probably Approximately Correct written by Leslie Valiant and published by Basic Books (AZ). This book was released on 2013-06-04 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a theory of the theoryless, a computer scientist provides a model of how effective behavior can be learned even in a world as complex as our own, shedding new light on human nature.

Becoming a Data Head

Download Becoming a Data Head PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119741769
Total Pages : 272 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Becoming a Data Head by : Alex J. Gutman

Download or read book Becoming a Data Head written by Alex J. Gutman and published by John Wiley & Sons. This book was released on 2021-04-13 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Turn yourself into a Data Head. You'll become a more valuable employee and make your organization more successful." Thomas H. Davenport, Research Fellow, Author of Competing on Analytics, Big Data @ Work, and The AI Advantage You’ve heard the hype around data—now get the facts. In Becoming a Data Head: How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning, award-winning data scientists Alex Gutman and Jordan Goldmeier pull back the curtain on data science and give you the language and tools necessary to talk and think critically about it. You’ll learn how to: Think statistically and understand the role variation plays in your life and decision making Speak intelligently and ask the right questions about the statistics and results you encounter in the workplace Understand what’s really going on with machine learning, text analytics, deep learning, and artificial intelligence Avoid common pitfalls when working with and interpreting data Becoming a Data Head is a complete guide for data science in the workplace: covering everything from the personalities you’ll work with to the math behind the algorithms. The authors have spent years in data trenches and sought to create a fun, approachable, and eminently readable book. Anyone can become a Data Head—an active participant in data science, statistics, and machine learning. Whether you’re a business professional, engineer, executive, or aspiring data scientist, this book is for you.

Predictive Statistics

Download Predictive Statistics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107028280
Total Pages : 657 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Predictive Statistics by : Bertrand S. Clarke

Download or read book Predictive Statistics written by Bertrand S. Clarke and published by Cambridge University Press. This book was released on 2018-04-12 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: A bold retooling of statistics to focus directly on predictive performance with traditional and contemporary data types and methodologies.

Time Series Forecasting in Python

Download Time Series Forecasting in Python PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638351473
Total Pages : 454 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Time Series Forecasting in Python by : Marco Peixeiro

Download or read book Time Series Forecasting in Python written by Marco Peixeiro and published by Simon and Schuster. This book was released on 2022-11-15 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches for time series forecasting. In Time Series Forecasting in Python you will learn how to: Recognize a time series forecasting problem and build a performant predictive model Create univariate forecasting models that account for seasonal effects and external variables Build multivariate forecasting models to predict many time series at once Leverage large datasets by using deep learning for forecasting time series Automate the forecasting process Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You’ll explore interesting real-world datasets like Google’s daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow. About the technology You can predict the future—with a little help from Python, deep learning, and time series data! Time series forecasting is a technique for modeling time-centric data to identify upcoming events. New Python libraries and powerful deep learning tools make accurate time series forecasts easier than ever before. About the book Time Series Forecasting in Python teaches you how to get immediate, meaningful predictions from time-based data such as logs, customer analytics, and other event streams. In this accessible book, you’ll learn statistical and deep learning methods for time series forecasting, fully demonstrated with annotated Python code. Develop your skills with projects like predicting the future volume of drug prescriptions, and you’ll soon be ready to build your own accurate, insightful forecasts. What's inside Create models for seasonal effects and external variables Multivariate forecasting models to predict multiple time series Deep learning for large datasets Automate the forecasting process About the reader For data scientists familiar with Python and TensorFlow. About the author Marco Peixeiro is a seasoned data science instructor who has worked as a data scientist for one of Canada’s largest banks. Table of Contents PART 1 TIME WAITS FOR NO ONE 1 Understanding time series forecasting 2 A naive prediction of the future 3 Going on a random walk PART 2 FORECASTING WITH STATISTICAL MODELS 4 Modeling a moving average process 5 Modeling an autoregressive process 6 Modeling complex time series 7 Forecasting non-stationary time series 8 Accounting for seasonality 9 Adding external variables to our model 10 Forecasting multiple time series 11 Capstone: Forecasting the number of antidiabetic drug prescriptions in Australia PART 3 LARGE-SCALE FORECASTING WITH DEEP LEARNING 12 Introducing deep learning for time series forecasting 13 Data windowing and creating baselines for deep learning 14 Baby steps with deep learning 15 Remembering the past with LSTM 16 Filtering a time series with CNN 17 Using predictions to make more predictions 18 Capstone: Forecasting the electric power consumption of a household PART 4 AUTOMATING FORECASTING AT SCALE 19 Automating time series forecasting with Prophet 20 Capstone: Forecasting the monthly average retail price of steak in Canada 21 Going above and beyond

Energy of Knots and Conformal Geometry

Download Energy of Knots and Conformal Geometry PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812383166
Total Pages : 306 pages
Book Rating : 4.8/5 (123 download)

DOWNLOAD NOW!


Book Synopsis Energy of Knots and Conformal Geometry by : Jun O'Hara

Download or read book Energy of Knots and Conformal Geometry written by Jun O'Hara and published by World Scientific. This book was released on 2003 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy of knots is a theory that was introduced to create a "canonical configuration" of a knot - a beautiful knot which represents its knot type. This book introduces several kinds of energies, and studies the problem of whether or not there is a "canonical configuration" of a knot in each knot type. It also considers this problem in the context of conformal geometry. The energies presented in the book are defined geometrically. They measure the complexity of embeddings and have applications to physical knotting and unknotting thorough numerical experiments.