Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Concept Algorithm Decision
Download Concept Algorithm Decision full books in PDF, epub, and Kindle. Read online Concept Algorithm Decision ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Concept, Algorithm, Decision by : Valentin Vasilʹevich Druzhinin
Download or read book Concept, Algorithm, Decision written by Valentin Vasilʹevich Druzhinin and published by . This book was released on 1975 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Algorithms to Live By by : Brian Christian
Download or read book Algorithms to Live By written by Brian Christian and published by Macmillan. This book was released on 2016-04-19 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Algorithms to Live By' looks at the simple, precise algorithms that computers use to solve the complex 'human' problems that we face, and discovers what they can tell us about the nature and origin of the mind.
Book Synopsis A Human's Guide to Machine Intelligence by : Kartik Hosanagar
Download or read book A Human's Guide to Machine Intelligence written by Kartik Hosanagar and published by Penguin. This book was released on 2020-03-10 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Wharton professor and tech entrepreneur examines how algorithms and artificial intelligence are starting to run every aspect of our lives, and how we can shape the way they impact us Through the technology embedded in almost every major tech platform and every web-enabled device, algorithms and the artificial intelligence that underlies them make a staggering number of everyday decisions for us, from what products we buy, to where we decide to eat, to how we consume our news, to whom we date, and how we find a job. We've even delegated life-and-death decisions to algorithms--decisions once made by doctors, pilots, and judges. In his new book, Kartik Hosanagar surveys the brave new world of algorithmic decision-making and reveals the potentially dangerous biases they can give rise to as they increasingly run our lives. He makes the compelling case that we need to arm ourselves with a better, deeper, more nuanced understanding of the phenomenon of algorithmic thinking. And he gives us a route in, pointing out that algorithms often think a lot like their creators--that is, like you and me. Hosanagar draws on his experiences designing algorithms professionally--as well as on history, computer science, and psychology--to explore how algorithms work and why they occasionally go rogue, what drives our trust in them, and the many ramifications of algorithmic decision-making. He examines episodes like Microsoft's chatbot Tay, which was designed to converse on social media like a teenage girl, but instead turned sexist and racist; the fatal accidents of self-driving cars; and even our own common, and often frustrating, experiences on services like Netflix and Amazon. A Human's Guide to Machine Intelligence is an entertaining and provocative look at one of the most important developments of our time and a practical user's guide to this first wave of practical artificial intelligence.
Book Synopsis Algorithms for Decision Making by : Mykel J. Kochenderfer
Download or read book Algorithms for Decision Making written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2022-08-16 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: A broad introduction to algorithms for decision making under uncertainty, introducing the underlying mathematical problem formulations and the algorithms for solving them. Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them. The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.
Book Synopsis The Cambridge Handbook of the Law of Algorithms by : Woodrow Barfield
Download or read book The Cambridge Handbook of the Law of Algorithms written by Woodrow Barfield and published by Cambridge University Press. This book was released on 2020-11-05 with total page 1327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms are a fundamental building block of artificial intelligence - and, increasingly, society - but our legal institutions have largely failed to recognize or respond to this reality. The Cambridge Handbook of the Law of Algorithms, which features contributions from US, EU, and Asian legal scholars, discusses the specific challenges algorithms pose not only to current law, but also - as algorithms replace people as decision makers - to the foundations of society itself. The work includes wide coverage of the law as it relates to algorithms, with chapters analyzing how human biases have crept into algorithmic decision-making about who receives housing or credit, the length of sentences for defendants convicted of crimes, and many other decisions that impact constitutionally protected groups. Other issues covered in the work include the impact of algorithms on the law of free speech, intellectual property, and commercial and human rights law.
Book Synopsis After the Digital Tornado by : Kevin Werbach
Download or read book After the Digital Tornado written by Kevin Werbach and published by Cambridge University Press. This book was released on 2020-07-23 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Networks powered by algorithms are pervasive. Major contemporary technology trends - Internet of Things, Big Data, Digital Platform Power, Blockchain, and the Algorithmic Society - are manifestations of this phenomenon. The internet, which once seemed an unambiguous benefit to society, is now the basis for invasions of privacy, massive concentrations of power, and wide-scale manipulation. The algorithmic networked world poses deep questions about power, freedom, fairness, and human agency. The influential 1997 Federal Communications Commission whitepaper “Digital Tornado” hailed the “endless spiral of connectivity” that would transform society, and today, little remains untouched by digital connectivity. Yet fundamental questions remain unresolved, and even more serious challenges have emerged. This important collection, which offers a reckoning and a foretelling, features leading technology scholars who explain the legal, business, ethical, technical, and public policy challenges of building pervasive networks and algorithms for the benefit of humanity. This title is also available as Open Access on Cambridge Core.
Book Synopsis Interpretable Machine Learning by : Christoph Molnar
Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Book Synopsis Algorithms for Optimization by : Mykel J. Kochenderfer
Download or read book Algorithms for Optimization written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2019-03-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.
Book Synopsis The Ethical Algorithm by : Michael Kearns
Download or read book The Ethical Algorithm written by Michael Kearns and published by . This book was released on 2020 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms have made our lives more efficient and entertaining--but not without a significant cost. Can we design a better future, one in which societial gains brought about by technology are balanced with the rights of citizens? The Ethical Algorithm offers a set of principled solutions based on the emerging and exciting science of socially aware algorithm design.
Download or read book Noise written by Daniel Kahneman and published by Little, Brown. This book was released on 2021-05-18 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Nobel Prize-winning author of Thinking, Fast and Slow and the coauthor of Nudge, a revolutionary exploration of why people make bad judgments and how to make better ones—"a tour de force” (New York Times). Imagine that two doctors in the same city give different diagnoses to identical patients—or that two judges in the same courthouse give markedly different sentences to people who have committed the same crime. Suppose that different interviewers at the same firm make different decisions about indistinguishable job applicants—or that when a company is handling customer complaints, the resolution depends on who happens to answer the phone. Now imagine that the same doctor, the same judge, the same interviewer, or the same customer service agent makes different decisions depending on whether it is morning or afternoon, or Monday rather than Wednesday. These are examples of noise: variability in judgments that should be identical. In Noise, Daniel Kahneman, Olivier Sibony, and Cass R. Sunstein show the detrimental effects of noise in many fields, including medicine, law, economic forecasting, forensic science, bail, child protection, strategy, performance reviews, and personnel selection. Wherever there is judgment, there is noise. Yet, most of the time, individuals and organizations alike are unaware of it. They neglect noise. With a few simple remedies, people can reduce both noise and bias, and so make far better decisions. Packed with original ideas, and offering the same kinds of research-based insights that made Thinking, Fast and Slow and Nudge groundbreaking New York Times bestsellers, Noise explains how and why humans are so susceptible to noise in judgment—and what we can do about it.
Book Synopsis Decision Making Under Uncertainty by : Mykel J. Kochenderfer
Download or read book Decision Making Under Uncertainty written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2015-07-24 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.
Book Synopsis Decision Procedures by : Daniel Kroening
Download or read book Decision Procedures written by Daniel Kroening and published by Springer Science & Business Media. This book was released on 2008-05-23 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: A decision procedure is an algorithm that, given a decision problem, terminates with a correct yes/no answer. Here, the authors focus on theories that are expressive enough to model real problems, but are still decidable. Specifically, the book concentrates on decision procedures for first-order theories that are commonly used in automated verification and reasoning, theorem-proving, compiler optimization and operations research. The techniques described in the book draw from fields such as graph theory and logic, and are routinely used in industry. The authors introduce the basic terminology of satisfiability modulo theories and then, in separate chapters, study decision procedures for each of the following theories: propositional logic; equalities and uninterpreted functions; linear arithmetic; bit vectors; arrays; pointer logic; and quantified formulas.
Book Synopsis Nature Inspired Computing by : Bijaya Ketan Panigrahi
Download or read book Nature Inspired Computing written by Bijaya Ketan Panigrahi and published by Springer. This book was released on 2017-10-03 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises the select proceedings of the annual convention of the Computer Society of India. Divided into 10 topical volumes, the proceedings present papers on state-of-the-art research, surveys, and succinct reviews. The volumes cover diverse topics ranging from communications networks to big data analytics, and from system architecture to cyber security. This volume focuses on Nature Inspired Computing. The contents of this book will be useful to researchers and students alike.
Book Synopsis Fuzzy Intelligent Systems by : E. Chandrasekaran
Download or read book Fuzzy Intelligent Systems written by E. Chandrasekaran and published by John Wiley & Sons. This book was released on 2021-09-08 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: FUZZY INTELLIGENT SYSTEMS A comprehensive guide to Expert Systems and Fuzzy Logic that is the backbone of artificial intelligence. The objective in writing the book is to foster advancements in the field and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and those in education and research covering a broad cross section of technical disciplines. Fuzzy Intelligent Systems: Methodologies, Techniques, and Applications comprises state-of-the-art chapters detailing how expert systems are built and how the fuzzy logic resembling human reasoning, powers them. Engineers, both current and future, need systematic training in the analytic theory and rigorous design of fuzzy control systems to keep up with and advance the rapidly evolving field of applied control technologies. As a consequence, expert systems with fuzzy logic capabilities make for a more versatile and innovative handling of problems. This book showcases the combination of fuzzy logic and neural networks known as a neuro-fuzzy system, which results in a hybrid intelligent system by combining a human-like reasoning style of neural networks. Audience Researchers and students in computer science, Internet of Things, artificial intelligence, machine learning, big data analytics and information and communication technology-related fields. Students will gain a thorough understanding of fuzzy control systems theory by mastering its contents.
Book Synopsis Algorithms and Law by : Martin Ebers
Download or read book Algorithms and Law written by Martin Ebers and published by Cambridge University Press. This book was released on 2020-07-23 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring issues from big-data to robotics, this volume is the first to comprehensively examine the regulatory implications of AI technology.
Book Synopsis Data Mining With Decision Trees: Theory And Applications (2nd Edition) by : Oded Z Maimon
Download or read book Data Mining With Decision Trees: Theory And Applications (2nd Edition) written by Oded Z Maimon and published by World Scientific. This book was released on 2014-09-03 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining; it is the science of exploring large and complex bodies of data in order to discover useful patterns. Decision tree learning continues to evolve over time. Existing methods are constantly being improved and new methods introduced.This 2nd Edition is dedicated entirely to the field of decision trees in data mining; to cover all aspects of this important technique, as well as improved or new methods and techniques developed after the publication of our first edition. In this new edition, all chapters have been revised and new topics brought in. New topics include Cost-Sensitive Active Learning, Learning with Uncertain and Imbalanced Data, Using Decision Trees beyond Classification Tasks, Privacy Preserving Decision Tree Learning, Lessons Learned from Comparative Studies, and Learning Decision Trees for Big Data. A walk-through guide to existing open-source data mining software is also included in this edition.This book invites readers to explore the many benefits in data mining that decision trees offer:
Book Synopsis Algorithms in Decision Support Systems by : Vicente García-Díaz
Download or read book Algorithms in Decision Support Systems written by Vicente García-Díaz and published by MDPI. This book was released on 2021-03-19 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide a new vision of how algorithms are the core of decision support systems (DSSs), which are increasingly important information systems that help to make decisions related to unstructured and semi-unstructured decision problems that do not have a simple solution from a human point of view. It begins with a discussion of how DSSs will be vital to improving the health of the population. The following article deals with how DSSs can be applied to improve the performance of people doing a specific task, like playing tennis. It continues with a work in which authors apply DSSs to insect pest management, together with an interactive platform for fitting data and carrying out spatial visualization. The next article improves how to reschedule trains whenever disturbances occur, together with an evaluation framework. The final works focus on different relevant areas of DSSs: 1) a comparison of ensemble and dimensionality reduction models based on an entropy criterion; 2) a radar emitter identification method based on semi-supervised and transfer learning; 3) design limitations, errors, and hazards in creating very large-scale DSSs; and 4) efficient rule generation for associative classification. We hope you enjoy all the contents in the book.