Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Computation With Recurrence Relations
Download Computation With Recurrence Relations full books in PDF, epub, and Kindle. Read online Computation With Recurrence Relations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Computation with Recurrence Relations by : Jet Wimp
Download or read book Computation with Recurrence Relations written by Jet Wimp and published by Pitman Advanced Publishing Program. This book was released on 1984 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Discrete Mathematics by : Oscar Levin
Download or read book Discrete Mathematics written by Oscar Levin and published by Createspace Independent Publishing Platform. This book was released on 2016-08-16 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Download or read book Discrete Mathematics written by Babu Ram and published by Pearson Education India. This book was released on 2012 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete Mathematics will be of use to any undergraduate as well as post graduate courses in Computer Science and Mathematics. The syllabi of all these courses have been studied in depth and utmost care has been taken to ensure that all the essential topics in discrete structures are adequately emphasized. The book will enable the students to develop the requisite computational skills needed in software engineering.
Book Synopsis Recurrent Sequences by : Dorin Andrica
Download or read book Recurrent Sequences written by Dorin Andrica and published by Springer Nature. This book was released on 2020-09-23 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained text presents state-of-the-art results on recurrent sequences and their applications in algebra, number theory, geometry of the complex plane and discrete mathematics. It is designed to appeal to a wide readership, ranging from scholars and academics, to undergraduate students, or advanced high school and college students training for competitions. The content of the book is very recent, and focuses on areas where significant research is currently taking place. Among the new approaches promoted in this book, the authors highlight the visualization of some recurrences in the complex plane, the concurrent use of algebraic, arithmetic, and trigonometric perspectives on classical number sequences, and links to many applications. It contains techniques which are fundamental in other areas of math and encourages further research on the topic. The introductory chapters only require good understanding of college algebra, complex numbers, analysis and basic combinatorics. For Chapters 3, 4 and 6 the prerequisites include number theory, linear algebra and complex analysis. The first part of the book presents key theoretical elements required for a good understanding of the topic. The exposition moves on to to fundamental results and key examples of recurrences and their properties. The geometry of linear recurrences in the complex plane is presented in detail through numerous diagrams, which lead to often unexpected connections to combinatorics, number theory, integer sequences, and random number generation. The second part of the book presents a collection of 123 problems with full solutions, illustrating the wide range of topics where recurrent sequences can be found. This material is ideal for consolidating the theoretical knowledge and for preparing students for Olympiads.
Book Synopsis Mathematical Recurrence Relations: Visual Mathematics Series by : Kiran R. Desai, Ph.d.
Download or read book Mathematical Recurrence Relations: Visual Mathematics Series written by Kiran R. Desai, Ph.d. and published by CreateSpace. This book was released on 2013-04-29 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about arranging numbers in a two dimensional space. It illustrates that it is possible to create many different regular patterns of numbers on a grid that represent meaningful summations. It uses a color coding scheme to enhance the detection of the underlying pattern for the numbers. Almost all arrangements presented are scalable or extensible, in that the matrix can be extended to larger size without the need to change existing number placements. The emphasis in this book is about the placement and summation of all the numbers for recursive embeddings. In many cases, visual charts are used to provide a higher level view of the topography, and to make the recurrence relations come alive. Number arrangements are represented for many well known multi-dimensional numbers, polygonal numbers, and various polynomials defined by recurrence relations based on equations that are a function of an integer variable n. The solutions for the recurrence relations can also be checked by adding the numbers in the arrangements presented. It is also possible to create a recurrence relation by starting with any polynomial equation using induction principles. Studying the terms in the recurrence relation helps design of the matrix and the number arrangement. This book has shown arrangements for exact powers of two, three, four, and five. Higher powers are indeed conceivable in two or three dimensional space and could be a topic for further study. Number arrangements for equations with different polynomial degree are seen to differ in the rate of change between values at adjacent levels. These have been elaborated at various places in the book. The study of recurrence relations is then steered towards arrangements for multiplication tables and linear equations in two variables. When enumerated on a coordinate graph, linear equations are seen as planar surfaces in space, and also allow solving a system of such equations visually. Although intended for college or advanced high school level students, for the majority audience this book serves as a treatise on the beauty inherent in numbers.
Book Synopsis Recurrence Sequences by : Graham Everest
Download or read book Recurrence Sequences written by Graham Everest and published by American Mathematical Soc.. This book was released on 2015-09-03 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recurrence sequences are of great intrinsic interest and have been a central part of number theory for many years. Moreover, these sequences appear almost everywhere in mathematics and computer science. This book surveys the modern theory of linear recurrence sequences and their generalizations. Particular emphasis is placed on the dramatic impact that sophisticated methods from Diophantine analysis and transcendence theory have had on the subject. Related work on bilinear recurrences and an emerging connection between recurrences and graph theory are covered. Applications and links to other areas of mathematics are described, including combinatorics, dynamical systems and cryptography, and computer science. The book is suitable for researchers interested in number theory, combinatorics, and graph theory.
Book Synopsis The Concrete Tetrahedron by : Manuel Kauers
Download or read book The Concrete Tetrahedron written by Manuel Kauers and published by Springer Science & Business Media. This book was released on 2011-01-15 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book treats four mathematical concepts which play a fundamental role in many different areas of mathematics: symbolic sums, recurrence (difference) equations, generating functions, and asymptotic estimates. Their key features, in isolation or in combination, their mastery by paper and pencil or by computer programs, and their applications to problems in pure mathematics or to "real world problems" (e.g. the analysis of algorithms) are studied. The book is intended as an algorithmic supplement to the bestselling "Concrete Mathematics" by Graham, Knuth and Patashnik.
Book Synopsis Analytic Combinatorics by : Philippe Flajolet
Download or read book Analytic Combinatorics written by Philippe Flajolet and published by Cambridge University Press. This book was released on 2009-01-15 with total page 825 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Book Synopsis An Introduction to the Analysis of Algorithms by : Robert Sedgewick
Download or read book An Introduction to the Analysis of Algorithms written by Robert Sedgewick and published by Addison-Wesley. This book was released on 2013-01-18 with total page 735 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite growing interest, basic information on methods and models for mathematically analyzing algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary techniques and results in the field. Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for predicting algorithm performance and for comparing different algorithms on the basis of performance. Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings, tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of algorithms that are playing a critical role in the evolution of our modern computational infrastructure. Improvements and additions in this new edition include Upgraded figures and code An all-new chapter introducing analytic combinatorics Simplified derivations via analytic combinatorics throughout The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s The Art of Computer Programming books—and provide the background they need to keep abreast of new research. "[Sedgewick and Flajolet] are not only worldwide leaders of the field, they also are masters of exposition. I am sure that every serious computer scientist will find this book rewarding in many ways." —From the Foreword by Donald E. Knuth
Book Synopsis Generatingfunctionology by : Herbert S. Wilf
Download or read book Generatingfunctionology written by Herbert S. Wilf and published by Elsevier. This book was released on 2014-05-10 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generatingfunctionology provides information pertinent to generating functions and some of their uses in discrete mathematics. This book presents the power of the method by giving a number of examples of problems that can be profitably thought about from the point of view of generating functions. Organized into five chapters, this book begins with an overview of the basic concepts of a generating function. This text then discusses the different kinds of series that are widely used as generating functions. Other chapters explain how to make much more precise estimates of the sizes of the coefficients of power series based on the analyticity of the function that is represented by the series. This book discusses as well the applications of the theory of generating functions to counting problems. The final chapter deals with the formal aspects of the theory of generating functions. This book is a valuable resource for mathematicians and students.
Book Synopsis Recurrence and Topology by : John M. Alongi
Download or read book Recurrence and Topology written by John M. Alongi and published by American Mathematical Soc.. This book was released on 2007 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since at least the time of Poisson, mathematicians have pondered the notion of recurrence for differential equations. Solutions that exhibit recurrent behavior provide insight into the behavior of general solutions. In Recurrence and Topology, Alongi and Nelson provide a modern understanding of the subject, using the language and tools of dynamical systems and topology. Recurrence and Topology develops increasingly more general topological modes of recurrence for dynamical systems beginning with fixed points and concluding with chain recurrent points.
Book Synopsis Inquiry-Based Enumerative Combinatorics by : T. Kyle Petersen
Download or read book Inquiry-Based Enumerative Combinatorics written by T. Kyle Petersen and published by Springer. This book was released on 2019-06-28 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers the opportunity to create a uniquely engaging combinatorics classroom by embracing Inquiry-Based Learning (IBL) techniques. Readers are provided with a carefully chosen progression of theorems to prove and problems to actively solve. Students will feel a sense of accomplishment as their collective inquiry traces a path from the basics to important generating function techniques. Beginning with an exploration of permutations and combinations that culminates in the Binomial Theorem, the text goes on to guide the study of ordinary and exponential generating functions. These tools underpin the in-depth study of Eulerian, Catalan, and Narayana numbers that follows, and a selection of advanced topics that includes applications to probability and number theory. Throughout, the theory unfolds via over 150 carefully selected problems for students to solve, many of which connect to state-of-the-art research. Inquiry-Based Enumerative Combinatorics is ideal for lower-division undergraduate students majoring in math or computer science, as there are no formal mathematics prerequisites. Because it includes many connections to recent research, students of any level who are interested in combinatorics will also find this a valuable resource.
Book Synopsis Introduction To Algorithms by : Thomas H Cormen
Download or read book Introduction To Algorithms written by Thomas H Cormen and published by MIT Press. This book was released on 2001 with total page 1216 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extensively revised edition of a mathematically rigorous yet accessible introduction to algorithms.
Book Synopsis Numerical Analysis in Modern Scientific Computing by : Peter Deuflhard
Download or read book Numerical Analysis in Modern Scientific Computing written by Peter Deuflhard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the main topics of modern numerical analysis: sequence of linear equations, error analysis, least squares, nonlinear systems, symmetric eigenvalue problems, three-term recursions, interpolation and approximation, large systems and numerical integrations. The presentation draws on geometrical intuition wherever appropriate and is supported by a large number of illustrations, exercises, and examples.
Book Synopsis Galois Theory of Difference Equations by : Marius van der Put
Download or read book Galois Theory of Difference Equations written by Marius van der Put and published by Springer. This book was released on 2006-11-14 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book lays the algebraic foundations of a Galois theory of linear difference equations and shows its relationship to the analytic problem of finding meromorphic functions asymptotic to formal solutions of difference equations. Classically, this latter question was attacked by Birkhoff and Tritzinsky and the present work corrects and greatly generalizes their contributions. In addition results are presented concerning the inverse problem in Galois theory, effective computation of Galois groups, algebraic properties of sequences, phenomena in positive characteristics, and q-difference equations. The book is aimed at advanced graduate researchers and researchers.
Book Synopsis Mathematics for Physical Science and Engineering by : Frank E. Harris
Download or read book Mathematics for Physical Science and Engineering written by Frank E. Harris and published by Academic Press. This book was released on 2014-05-24 with total page 787 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics for Physical Science and Engineering is a complete text in mathematics for physical science that includes the use of symbolic computation to illustrate the mathematical concepts and enable the solution of a broader range of practical problems. This book enables professionals to connect their knowledge of mathematics to either or both of the symbolic languages Maple and Mathematica. The book begins by introducing the reader to symbolic computation and how it can be applied to solve a broad range of practical problems. Chapters cover topics that include: infinite series; complex numbers and functions; vectors and matrices; vector analysis; tensor analysis; ordinary differential equations; general vector spaces; Fourier series; partial differential equations; complex variable theory; and probability and statistics. Each important concept is clarified to students through the use of a simple example and often an illustration. This book is an ideal reference for upper level undergraduates in physical chemistry, physics, engineering, and advanced/applied mathematics courses. It will also appeal to graduate physicists, engineers and related specialties seeking to address practical problems in physical science. - Clarifies each important concept to students through the use of a simple example and often an illustration - Provides quick-reference for students through multiple appendices, including an overview of terms in most commonly used applications (Mathematica, Maple) - Shows how symbolic computing enables solving a broad range of practical problems
Book Synopsis Numerical Methods for Special Functions by : Amparo Gil
Download or read book Numerical Methods for Special Functions written by Amparo Gil and published by SIAM. This book was released on 2007-01-01 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special functions arise in many problems of pure and applied mathematics, mathematical statistics, physics, and engineering. This book provides an up-to-date overview of numerical methods for computing special functions and discusses when to use these methods depending on the function and the range of parameters. Not only are standard and simple parameter domains considered, but methods valid for large and complex parameters are described as well. The first part of the book (basic methods) covers convergent and divergent series, Chebyshev expansions, numerical quadrature, and recurrence relations. Its focus is on the computation of special functions; however, it is suitable for general numerical courses. Pseudoalgorithms are given to help students write their own algorithms. In addition to these basic tools, the authors discuss other useful and efficient methods, such as methods for computing zeros of special functions, uniform asymptotic expansions, Padé approximations, and sequence transformations. The book also provides specific algorithms for computing several special functions (like Airy functions and parabolic cylinder functions, among others).