Computation, Causation, and Discovery

Download Computation, Causation, and Discovery PDF Online Free

Author :
Publisher :
ISBN 13 : 9780262315821
Total Pages : pages
Book Rating : 4.3/5 (158 download)

DOWNLOAD NOW!


Book Synopsis Computation, Causation, and Discovery by : Clark N. Glymour

Download or read book Computation, Causation, and Discovery written by Clark N. Glymour and published by . This book was released on 1999 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Causation, Prediction, and Search

Download Causation, Prediction, and Search PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461227488
Total Pages : 551 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Causation, Prediction, and Search by : Peter Spirtes

Download or read book Causation, Prediction, and Search written by Peter Spirtes and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for anyone, regardless of discipline, who is interested in the use of statistical methods to help obtain scientific explanations or to predict the outcomes of actions, experiments or policies. Much of G. Udny Yule's work illustrates a vision of statistics whose goal is to investigate when and how causal influences may be reliably inferred, and their comparative strengths estimated, from statistical samples. Yule's enterprise has been largely replaced by Ronald Fisher's conception, in which there is a fundamental cleavage between experimental and non experimental inquiry, and statistics is largely unable to aid in causal inference without randomized experimental trials. Every now and then members of the statistical community express misgivings about this turn of events, and, in our view, rightly so. Our work represents a return to something like Yule's conception of the enterprise of theoretical statistics and its potential practical benefits. If intellectual history in the 20th century had gone otherwise, there might have been a discipline to which our work belongs. As it happens, there is not. We develop material that belongs to statistics, to computer science, and to philosophy; the combination may not be entirely satisfactory for specialists in any of these subjects. We hope it is nonetheless satisfactory for its purpose.

Computation, Causation, and Discovery

Download Computation, Causation, and Discovery PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 576 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Computation, Causation, and Discovery by : Clark N. Glymour

Download or read book Computation, Causation, and Discovery written by Clark N. Glymour and published by . This book was released on 1999 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: In science, business, and policymaking -- anywhere data are used in prediction -- two sorts of problems requiring very different methods of analysis often arise. The first, problems of recognition and classification, concerns learning how to use some features of a system to accurately predict other features of that system. The second, problems of causal discovery, concerns learning how to predict those changes to some features of a system that will result if an intervention changes other features. This book is about the second -- much more difficult -- type of problem. Typical problems of causal discovery are: How will a change in commission rates affect the total sales of a company? How will a reduction in cigarette smoking among older smokers affect their life expectancy? How will a change in the formula a college uses to award scholarships affect its dropout rate? These sorts of changes are interventions that directly alter some features of the system and perhaps -- and this is the question -- indirectly alter others. The contributors discuss recent research and applications using Bayes nets or directed graphic representations, including representations of feedback or recursive systems. The book contains a thorough discussion of foundational issues, algorithms, proof techniques, and applications to economics, physics, biology, educational research, and other areas.

An Introduction to Causal Inference

Download An Introduction to Causal Inference PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781507894293
Total Pages : 0 pages
Book Rating : 4.8/5 (942 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Causal Inference by : Judea Pearl

Download or read book An Introduction to Causal Inference written by Judea Pearl and published by Createspace Independent Publishing Platform. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.

Elements of Causal Inference

Download Elements of Causal Inference PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262037319
Total Pages : 289 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Elements of Causal Inference by : Jonas Peters

Download or read book Elements of Causal Inference written by Jonas Peters and published by MIT Press. This book was released on 2017-11-29 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.

Causality

Download Causality PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 052189560X
Total Pages : 487 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Causality by : Judea Pearl

Download or read book Causality written by Judea Pearl and published by Cambridge University Press. This book was released on 2009-09-14 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...

Agent-based Models and Causal Inference

Download Agent-based Models and Causal Inference PDF Online Free

Author :
Publisher : Wiley
ISBN 13 : 9781119704478
Total Pages : 208 pages
Book Rating : 4.7/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Agent-based Models and Causal Inference by : Gianluca Manzo

Download or read book Agent-based Models and Causal Inference written by Gianluca Manzo and published by Wiley. This book was released on 2022-02-14 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the issue of causal inference in agent-based computational models in a first-of-it’s-kind volume Agent-based Models and Causal Inference delivers an insightful investigation into the conditions under which different quantitative methods can legitimately hold to be able to establish causal claims. The book compares agent-based computational methods with randomized experiments, instrumental variables, and various types of causal graphs. It goes on to explain why there is no strong argument to believe that observational and experimental methods are qualitatively superior to simulation-based methods in their capacity to contribute to establishing causal claims. Organized in two parts, Agent-based Models and Causal Inference connects the literature from various fields, including causality, social mechanisms, statistical and experimental methods for causal inference, and agent-based computation models to help show that causality means different things within different methods for causal analysis, and that persuasive causal claims can only be built at the intersection of these various methods. Readers will also benefit from the inclusion of: A thorough comparison between agent-based computation models to randomized experiments, instrumental variables, and several types of causal graphs. A compelling argument that observational and experimental methods are not qualitatively superior to simulation-based methods in their ability to establish causal claims Practical discussions of how statistical, experimental and computational methods can be combined to produce reliable causal inferences Perfect for academic social scientists and scholars in the fields of computational social science, philosophy, statistics, experimental design, and ecology, Agent-based Models and Causal Inference will also earn a place in the libraries of PhD students seeking a one-stop reference on the issue of causal inference in agent-based computational models.

Actual Causality

Download Actual Causality PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262035022
Total Pages : 240 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Actual Causality by : Joseph Y. Halpern

Download or read book Actual Causality written by Joseph Y. Halpern and published by MIT Press. This book was released on 2016-08-12 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explores actual causality, and such related notions as degree of responsibility, degree of blame, and causal explanation. The goal is to arrive at a definition of causality that matches our natural language usage and is helpful, for example, to a jury deciding a legal case, a programmer looking for the line of code that cause some software to fail, or an economist trying to determine whether austerity caused a subsequent depression.

The Book of Why

Download The Book of Why PDF Online Free

Author :
Publisher : Basic Books
ISBN 13 : 0465097618
Total Pages : 432 pages
Book Rating : 4.4/5 (65 download)

DOWNLOAD NOW!


Book Synopsis The Book of Why by : Judea Pearl

Download or read book The Book of Why written by Judea Pearl and published by Basic Books. This book was released on 2018-05-15 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.

Probabilistic Graphical Models

Download Probabilistic Graphical Models PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262258358
Total Pages : 1270 pages
Book Rating : 4.2/5 (622 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Graphical Models by : Daphne Koller

Download or read book Probabilistic Graphical Models written by Daphne Koller and published by MIT Press. This book was released on 2009-07-31 with total page 1270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Causal Inference in Statistics

Download Causal Inference in Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119186862
Total Pages : 162 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Causal Inference in Statistics by : Judea Pearl

Download or read book Causal Inference in Statistics written by Judea Pearl and published by John Wiley & Sons. This book was released on 2016-01-25 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.

Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing

Download Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540140409
Total Pages : 758 pages
Book Rating : 4.5/5 (41 download)

DOWNLOAD NOW!


Book Synopsis Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing by : Guoyin Wang

Download or read book Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing written by Guoyin Wang and published by Springer Science & Business Media. This book was released on 2003-05-08 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2003, held in Chongqing, China in May 2003. The 39 revised full papers and 75 revised short papers presented together with 2 invited keynote papers and 11 invited plenary papers were carefully reviewed and selected from a total of 245 submissions. The papers are organized in topical sections on rough sets foundations and methods; fuzzy sets and systems; granular computing; neural networks and evolutionary computing; data mining, machine learning, and pattern recognition; logics and reasoning; multi-agent systems; and Web intelligence and intelligent systems.

Bayesian Nets and Causality: Philosophical and Computational Foundations

Download Bayesian Nets and Causality: Philosophical and Computational Foundations PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 019853079X
Total Pages : 250 pages
Book Rating : 4.1/5 (985 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Nets and Causality: Philosophical and Computational Foundations by : Jon Williamson

Download or read book Bayesian Nets and Causality: Philosophical and Computational Foundations written by Jon Williamson and published by Oxford University Press. This book was released on 2005 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nets are used in artificial intelligence as a calculus for causal reasoning, enabling machines to make predictions perform diagnoses, take decisions and even to discover causal relationships. This book brings together how to automate reasoning in artificial intelligence, and the nature of causality and probability in philosophy.

Causal Learning

Download Causal Learning PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0190208260
Total Pages : 384 pages
Book Rating : 4.1/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Causal Learning by : Alison Gopnik

Download or read book Causal Learning written by Alison Gopnik and published by Oxford University Press. This book was released on 2007-03-22 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding causal structure is a central task of human cognition. Causal learning underpins the development of our concepts and categories, our intuitive theories, and our capacities for planning, imagination and inference. During the last few years, there has been an interdisciplinary revolution in our understanding of learning and reasoning: Researchers in philosophy, psychology, and computation have discovered new mechanisms for learning the causal structure of the world. This new work provides a rigorous, formal basis for theory theories of concepts and cognitive development, and moreover, the causal learning mechanisms it has uncovered go dramatically beyond the traditional mechanisms of both nativist theories, such as modularity theories, and empiricist ones, such as association or connectionism.

Information and Computation

Download Information and Computation PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814295477
Total Pages : 530 pages
Book Rating : 4.8/5 (142 download)

DOWNLOAD NOW!


Book Synopsis Information and Computation by : Gordana Dodig Crnkovic

Download or read book Information and Computation written by Gordana Dodig Crnkovic and published by World Scientific. This book was released on 2011 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a cutting-edge view of the world's leading authorities in fields where information and computation play a central role.

The Cambridge Handbook of Computational Psychology

Download The Cambridge Handbook of Computational Psychology PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521674107
Total Pages : 767 pages
Book Rating : 4.5/5 (216 download)

DOWNLOAD NOW!


Book Synopsis The Cambridge Handbook of Computational Psychology by : Ron Sun

Download or read book The Cambridge Handbook of Computational Psychology written by Ron Sun and published by Cambridge University Press. This book was released on 2008-04-28 with total page 767 pages. Available in PDF, EPUB and Kindle. Book excerpt: A cutting-edge reference source for the interdisciplinary field of computational cognitive modeling.

Causality, Probability, and Time

Download Causality, Probability, and Time PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107026482
Total Pages : 269 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Causality, Probability, and Time by : Samantha Kleinberg

Download or read book Causality, Probability, and Time written by Samantha Kleinberg and published by Cambridge University Press. This book was released on 2013 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a new approach to causal inference and explanation, addressing both the timing and complexity of relationships.