Carrier Mobility in Organic Charge Transport Materials

Download Carrier Mobility in Organic Charge Transport Materials PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 376 pages
Book Rating : 4.:/5 (567 download)

DOWNLOAD NOW!


Book Synopsis Carrier Mobility in Organic Charge Transport Materials by : Jason U. Wallace

Download or read book Carrier Mobility in Organic Charge Transport Materials written by Jason U. Wallace and published by . This book was released on 2009 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Non-Equilibrium Charge Motion in Organic Solar Cells

Download Non-Equilibrium Charge Motion in Organic Solar Cells PDF Online Free

Author :
Publisher : Linköping University Electronic Press
ISBN 13 : 9176855635
Total Pages : 101 pages
Book Rating : 4.1/5 (768 download)

DOWNLOAD NOW!


Book Synopsis Non-Equilibrium Charge Motion in Organic Solar Cells by : Armantas Melianas

Download or read book Non-Equilibrium Charge Motion in Organic Solar Cells written by Armantas Melianas and published by Linköping University Electronic Press. This book was released on 2017-04-18 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaic (OPV) devices based on semiconducting polymers and small molecules allow for a low cost alternative to inorganic solar cells. Recent developments show power conversion efficiencies as high as 10-12%, highlighting the potential of this technology. Nevertheless, further improvements are necessary to achieve commercialization. To a large extent the performance of these devices is dictated by their ability to extract the photo-generated charge, which is related to the charge carrier mobility. Various time-resolved and steady-state techniques are available to probe the charge carrier mobility in OPVs but often lead to different mobility values for one and the same system. Despite such conflicting observations it is generally assumed that charge transport in OPV devices can be described by well-defined charge carrier mobilities, typically obtained using a single steady-state technique. This thesis shows that the relevance of such well-defined mobilities for the charge separation and extraction processes is very limited. Although different transient techniques probe different time scales after photogeneration, they are mutually consistent as they probe the same physical mechanism governing charge motion – gradual thermalization of the photo-generated carriers in the disorder broadened density of states (DOS). The photo-generated carriers gradually lose their excess energy during transport to the extracting electrodes, but not immediately. Typically not all excess energy is dissipated as the photo-generated carriers tend to be extracted from the OPV device before reaching quasi-equilibrium. Carrier motion is governed by thermalization, leading to a time-dependent carrier mobility that is significantly higher than the steady-state mobility. This picture is confirmed by several transient techniques: Time-resolved Terahertz Spectroscopy (TRTS), Time-resolved Microwave Conductance (TRMC) combined with Transient Absorption (TA), electrical extraction of photo-induced charges (photo-CELIV). The connection between transient and steady-state mobility measurements (space-charge limited conductivity, SCLC) is described. Unification of transient opto-electric techniques to probe charge motion in OPVs is presented. Using transient experiments the distribution of extraction times of photo-generated charges in an operating OPV device has been determined and found to be strongly dispersive, spanning several decades in time. In view of the strong dispersion in extraction times the relevance of even a well-defined time-dependent mean mobility is limited. In OPVs a continuous ‘percolating’ donor network is often considered necessary for efficient hole extraction, whereas if the network is discontinuous, hole transport is thought to deteriorate significantly, limiting device performance. Here, it is shown that even highly diluted donor sites (5.7-10 %) in a buckminsterfullerene (C60) matrix enable reasonably efficient hole transport. Using transient measurements it is demonstrated that hole transport between isolated donor sites can occur by long-range hole tunneling (over distances of ~4 nm) through several C60 molecules – even a discontinuous donor network enables hole transport

On the Influence of Physical and Chemical Structure on Charge Transport in Disordered Semiconducting Materials and Devices

Download On the Influence of Physical and Chemical Structure on Charge Transport in Disordered Semiconducting Materials and Devices PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (93 download)

DOWNLOAD NOW!


Book Synopsis On the Influence of Physical and Chemical Structure on Charge Transport in Disordered Semiconducting Materials and Devices by : Samuel Foster

Download or read book On the Influence of Physical and Chemical Structure on Charge Transport in Disordered Semiconducting Materials and Devices written by Samuel Foster and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Organic Conductors

Download Organic Conductors PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000723585
Total Pages : 874 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Organic Conductors by : Jean-Pierre Farges

Download or read book Organic Conductors written by Jean-Pierre Farges and published by CRC Press. This book was released on 2022-09-16 with total page 874 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work examines all aspects of organic conductors, detailing recent theoretical concepts and current laboratory methods of synthesis, measurement, control and analysis. It describes advances in molecular-scale engineering, including switching and memory systems, Schottky and electroluminescent diodes, field-effect transistors, and photovoltaic devices and solar cells.

Charge Transport in Disordered Solids with Applications in Electronics

Download Charge Transport in Disordered Solids with Applications in Electronics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470095059
Total Pages : 498 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Charge Transport in Disordered Solids with Applications in Electronics by : Sergei Baranovski

Download or read book Charge Transport in Disordered Solids with Applications in Electronics written by Sergei Baranovski and published by John Wiley & Sons. This book was released on 2006-08-14 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of charge conduction in disordered materials is a rapidly evolving area owing to current and potential applications of these materials in various electronic devices This text aims to cover conduction in disordered solids from fundamental physical principles and theories, through practical material development with an emphasis on applications in all areas of electronic materials. International group of contributors Presents basic physical concepts developed in this field in recent years in a uniform manner Brings up-to-date, in a one-stop source, a key evolving area in the field of electronic materials

Organic Semiconductors for Optoelectronics

Download Organic Semiconductors for Optoelectronics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119146100
Total Pages : 388 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Organic Semiconductors for Optoelectronics by : Hiroyoshi Naito

Download or read book Organic Semiconductors for Optoelectronics written by Hiroyoshi Naito and published by John Wiley & Sons. This book was released on 2021-08-02 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors. Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices Discusses current and future trends and challenges in the development of organic optoelectronic devices Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development.

Charge Dynamics in Organic Semiconductors

Download Charge Dynamics in Organic Semiconductors PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110473631
Total Pages : 202 pages
Book Rating : 4.1/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Charge Dynamics in Organic Semiconductors by : Pascal Kordt

Download or read book Charge Dynamics in Organic Semiconductors written by Pascal Kordt and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-09-12 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the field of organic semiconductors researchers and manufacturers are faced with a wide range of potential molecules. This work presents concepts for simulation-based predictions of material characteristics starting from chemical stuctures. The focus lies on charge transport – be it in microscopic models of amorphous morphologies, lattice models or large-scale device models. An extensive introductory review, which also includes experimental techniques, makes this work interesting for a broad readership. Contents: Organic Semiconductor Devices Experimental Techniques Charge Dynamics at Dierent Scales Computational Methods Energetics and Dispersive Transport Correlated Energetic Landscapes Microscopic, Stochastic and Device Simulations Parametrization of Lattice Models Drift–Diusion with Microscopic Link

Electronic Processes in Organic Semiconductors

Download Electronic Processes in Organic Semiconductors PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527332928
Total Pages : 436 pages
Book Rating : 4.5/5 (273 download)

DOWNLOAD NOW!


Book Synopsis Electronic Processes in Organic Semiconductors by : Anna Köhler

Download or read book Electronic Processes in Organic Semiconductors written by Anna Köhler and published by John Wiley & Sons. This book was released on 2015-06-08 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.

Theory of Charge Transport in Carbon Electronic Materials

Download Theory of Charge Transport in Carbon Electronic Materials PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642250750
Total Pages : 96 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Theory of Charge Transport in Carbon Electronic Materials by : Zhigang Shuai

Download or read book Theory of Charge Transport in Carbon Electronic Materials written by Zhigang Shuai and published by Springer Science & Business Media. This book was released on 2012-01-05 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanism of charge transport in organic solids has been an issue of intensive interests and debates for over 50 years, not only because of the applications in printing electronics, but also because of the great challenges in understanding the electronic processes in complex systems. With the fast developments of both electronic structure theory and the computational technology, the dream of predicting the charge mobility is now gradually becoming a reality. This volume describes recent progresses in Prof. Shuai’s group in developing computational tools to assess the intrinsic carrier mobility for organic and carbon materials at the first-principles level. According to the electron-phonon coupling strength, the charge transport mechanism is classified into three different categories, namely, the localized hopping model, the extended band model, and the polaron model. For each of them, a corresponding theoretical approach is developed and implemented into typical examples.

Charge Carrier Transport and Injection Across Organic Heterojunctions

Download Charge Carrier Transport and Injection Across Organic Heterojunctions PDF Online Free

Author :
Publisher :
ISBN 13 : 9780494591567
Total Pages : 332 pages
Book Rating : 4.5/5 (915 download)

DOWNLOAD NOW!


Book Synopsis Charge Carrier Transport and Injection Across Organic Heterojunctions by : Sai Wing Tsang

Download or read book Charge Carrier Transport and Injection Across Organic Heterojunctions written by Sai Wing Tsang and published by . This book was released on 2009 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: The discovery of highly efficient organic light-emitting diodes (OLEDs) in the 1980s has stimulated extensive research on organic semiconductors and devices. Underlying this breakthrough is the realization of the organic heterojunction (OH). Besides OLEDs, the implementation of the OH also significantly improves the power conversion efficiency in organic photovoltaic cells (OPVs). The continued technological advancements in organic electronic devices depend on the accumulation of knowledge of the intrinsic properties of organic materials and related interfaces. Among them, charge-carrier transport and carrier injection are two key factors that govern the performance of a device.From the point of view of application, an interface chemical doping method is proposed to engineer the carrier injection at an organic heterojunction. It is found that the injection current can be effectively increased or suppressed by introducing a thin (2 nm) doped organic layer at the interface. This technique is further extended to study the impact of an injection barrier at the OH, in OLEDs, on device performance. It is shown that a 0.3 eV injection barrier at the OH, that is normally negligible at metal/organic interface, can reduce the device efficiency by 25%. This is explained by the carrier distribution in the density-of-states at the OH.Furthermore, the carrier transport properties in a bulk heterojunction system are investigated. The bulk heterojunction consists of an interpenetrating network of a polymeric electron donor and a molecular electron acceptor. This material system has been studied in the last few years as an attractive power conversion efficiency (5% under AM 1.5) of OPV cells has been demonstrated. It is found that the electron mobility is greatly dependent on the thermal treatment of the film. Interfacial dipole effect at the heterojunction between the donor and the acceptor is proposed to be the determining factor that alters the carrier mobility in different nanoscale structures.This thesis mainly focuses on the charge carrier injection and transport at organic heterojunctions. The carrier transport properties of different organic materials used in this study are characterized by time-of-flight (TOF) and admittance spectroscopy (AS). An injection model is formulated by considering the carrier distribution at both sides of the interface. Using a steady-state simulation approach, the effect of accumulated charges on energy level alignment at OH is revealed. Instead of a constant injection barrier, it is found that the barrier varies with applied voltage. Moreover, an escape probability function in the injection model is modified by taking into account the total hopping rate and available hopping sites at the interface. The model predicts that the injection current at low temperature can be dramatically modified by an extremely small density of deep trap states. More importantly, the temperature dependence of the injection current is found to decrease with increasing barrier height. This suggests that extracting the barrier height from the J vs 1/T plot, as commonly employed in the literature, is problematic. These theoretical predictions are confirmed by a series of experiments on heterojunction devices with various barrier heights. In addition, the presence of deep trap states is also consistent with carrier mobility measurements at low temperature.

Perovskite Solar Cells

Download Perovskite Solar Cells PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527347151
Total Pages : 580 pages
Book Rating : 4.5/5 (273 download)

DOWNLOAD NOW!


Book Synopsis Perovskite Solar Cells by : Shahzada Ahmad

Download or read book Perovskite Solar Cells written by Shahzada Ahmad and published by John Wiley & Sons. This book was released on 2022-03-14 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a thorough overview of perovskite research, written by leaders in the field of photovoltaics The use of perovskite-structured materials to produce high-efficiency solar cells is a subject of growing interest for academic researchers and industry professionals alike. Due to their excellent light absorption, longevity, and charge-carrier properties, perovskite solar cells show great promise as a low-cost, industry-scalable alternative to conventional photovoltaic cells. Perovskite Solar Cells: Materials, Processes, and Devices provides an up-to-date overview of the current state of perovskite solar cell research. Addressing the key areas in the rapidly growing field, this comprehensive volume covers novel materials, advanced theory, modelling and simulation, device physics, new processes, and the critical issue of solar cell stability. Contributions by an international panel of researchers highlight both the opportunities and challenges related to perovskite solar cells while offering detailed insights on topics such as the photon recycling processes, interfacial properties, and charge transfer principles of perovskite-based devices. Examines new compositions, hole and electron transport materials, lead-free materials, and 2D and 3D materials Covers interface modelling techniques, methods for modelling in two and three dimensions, and developments beyond Shockley-Queisser Theory Discusses new fabrication processes such as slot-die coating, roll processing, and vacuum sublimation Describes the device physics of perovskite solar cells, including recombination kinetics and optical absorption Explores innovative approaches to increase the light conversion efficiency of photovoltaic cells Perovskite Solar Cells: Materials, Processes, and Devices is essential reading for all those in the photovoltaic community, including materials scientists, surface physicists, surface chemists, solid state physicists, solid state chemists, and electrical engineers.

Solution-Processable Components for Organic Electronic Devices

Download Solution-Processable Components for Organic Electronic Devices PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527814949
Total Pages : 688 pages
Book Rating : 4.5/5 (278 download)

DOWNLOAD NOW!


Book Synopsis Solution-Processable Components for Organic Electronic Devices by : Beata Luszczynska

Download or read book Solution-Processable Components for Organic Electronic Devices written by Beata Luszczynska and published by John Wiley & Sons. This book was released on 2019-06-11 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.

Nanocrystal Quantum Dots

Download Nanocrystal Quantum Dots PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420079271
Total Pages : 485 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Nanocrystal Quantum Dots by : Victor I. Klimov

Download or read book Nanocrystal Quantum Dots written by Victor I. Klimov and published by CRC Press. This book was released on 2017-12-19 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: A review of recent advancements in colloidal nanocrystals and quantum-confined nanostructures, Nanocrystal Quantum Dots is the second edition of Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, originally published in 2003. This new title reflects the book’s altered focus on semiconductor nanocrystals. Gathering contributions from leading researchers, this book contains new chapters on carrier multiplication (generation of multiexcitons by single photons), doping of semiconductor nanocrystals, and applications of nanocrystals in biology. Other updates include: New insights regarding the underlying mechanisms supporting colloidal nanocrystal growth A revised general overview of multiexciton phenomena, including spectral and dynamical signatures of multiexcitons in transient absorption and photoluminescence Analysis of nanocrystal-specific features of multiexciton recombination A review of the status of new field of carrier multiplication Expanded coverage of theory, covering the regime of high-charge densities New results on quantum dots of lead chalcogenides, with a focus studies of carrier multiplication and the latest results regarding Schottky junction solar cells Presents useful examples to illustrate applications of nanocrystals in biological labeling, imaging, and diagnostics The book also includes a review of recent progress made in biological applications of colloidal nanocrystals, as well as a comparative analysis of the advantages and limitations of techniques for preparing biocompatible quantum dots. The authors summarize the latest developments in the synthesis and understanding of magnetically doped semiconductor nanocrystals, and they present a detailed discussion of issues related to the synthesis, magneto-optics, and photoluminescence of doped colloidal nanocrystals as well. A valuable addition to the pantheon of literature in the field of nanoscience, this book presents pioneering research from experts whose work has led to the numerous advances of the past several years.

Effects of Energetic Disorder on the Optoelectronic Properties of Organic Solar Cells

Download Effects of Energetic Disorder on the Optoelectronic Properties of Organic Solar Cells PDF Online Free

Author :
Publisher : Linköping University Electronic Press
ISBN 13 : 9176852717
Total Pages : 60 pages
Book Rating : 4.1/5 (768 download)

DOWNLOAD NOW!


Book Synopsis Effects of Energetic Disorder on the Optoelectronic Properties of Organic Solar Cells by : Nikolaos Felekidis

Download or read book Effects of Energetic Disorder on the Optoelectronic Properties of Organic Solar Cells written by Nikolaos Felekidis and published by Linköping University Electronic Press. This book was released on 2018-09-10 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaics (OPVs) is a promising low-cost and environmental-friendly technology currently achieving 12-14% power conversion efficiency. Despite the extensive focus of the research community over the last years, critical mechanisms defining the performance of OPVs are still topics of debate. While energetic disorder is known to be characteristic of organic semiconductors in general, its potential role in OPV has received surprisingly little attention. In this thesis we investigate some aspects of the relation between energetic disorder and several optoelectronic properties of OPV. Charge carrier mobility is a key parameter in characterizing the performance of organic semiconductors. Analyzing the temperature dependence of the mobility is also an oftenused method to obtain (estimates for) the energetic disorder in the HOMO and LUMO levels of an organic semiconductor material. Different formalisms to extract and analyze mobilities from space charge limited conductivity (SCLC) experiments are reviewed. Surprisingly, the Murgatroyd-Gill analytical model in combination with the Gaussian disorder model in the Boltzmann limit yields similar mobilities and energetic disorders as a more elaborate drift-diffusion model with parametrized mobility functionals. Common analysis and measurement errors are discussed. All the models are incorporated in an automated analysis freeware tool. The open circuit voltage (Voc) has attracted considerable interest as the large difference between Voc and the bandgap is the main loss mechanism in bulk heterojunction OPVs. Surprisingly, in ternary devices composed of two donors and one acceptor, the Voc is not pinned to the shallowest HOMO but demonstrates a continuous tunability between the binary extremities. We show that this phenomenon can be explained with an equilibrium model where Voc is defined as the splitting of the quasi-Fermi levels of the photo-created holes and electrons in a common density of states accounting for the stoichiometry, i.e. the ratio of the donor materials and the broadening by Gaussian disorder. Evaluating the PCE, it is found that ternary devices do not offer advantages over binary unless the fill factor (FF) is increased at intermediate compositions, as a result of improved transport/recombination upon material blending. Stressing the importance of material intermixing to improve the performance, we found that the presence of an acceptor may drastically alter the mobility and energetic disorder of the donor and vice versa. The effect of different acceptors was studied in a ternary onedonor- two-acceptors system, where the unpredictable variability with composition of the energetic disorder in the HOMO and the LUMO explained the almost linear tunability of Voc. Designing binary OPVs based on the design rule that the energetic disorder can be reduced upon material blending, as we observed, can yield a relative PCE improvement of at least 20%. CT states currently play a key role in evaluating the performance of OPVs and CTelectroluminescence (CT-EL) is assumed to stem from the recombination of thermalized electron-hole pairs. The varying width of the CT-EL peak for different material combinations is intuitively expected to reflect the energetic disorder of the effective HOMO and LUMO. We employ kinetic Monte Carlo (kMC) CT-EL simulations, using independently measured disorder parameters as input, to calculate the ground-to-ground state (0-0) transition spectrum. Including the vibronic broadening according to the Franck Condon principle, we reproduce the width and current dependence of the measured CT-EL peak for a large number of donor-acceptor combinations. The fitted dominant phonon modes compare well with the values measured using the spectral line narrowing technique. Importantly, the calculations show that CT-EL originates from a narrow, non-thermalized subset of all available CT states, which can be understood by considering the kinetic microscopic process with which electron-hole pairs meet and recombine. Despite electron-hole pairs being strongly bound in organic materials, the charge separation process following photo-excitation is found to be extremely efficient and independent of the excitation energy. However, at low photon energies where the charges are excited deep in the tail of the DOS, it is intuitively expected for the extraction yield to be quenched. Internal Quantum Efficiency (IQE) experiments for different material systems show both inefficient and efficient charge dissociation for excitation close to the CT energy. This finding is explained by kinetic Monte Carlo simulations accounting for a varying degree of e-h delocalization, where strongly bound localized CT pairs (< 2nm distance) are doomed to recombine at low excitation energies while extended delocalization over 3-5nm yields an increased and energy-independent IQE. Using a single material parameter set, the experimental CT electroluminescence and absorption spectra are reproduced by the same kMC model by accounting for the vibronic progression of the calculated 0-0 transition. In contrast to CT-EL, CT-absorption probes the complete CT manifold. Charge transport in organic solar cells is currently modelled as either an equilibrium or a non-equilibrium process. The former is described by drift-diffusion (DD) equations, which can be calculated quickly but assume local thermal equilibrium of the charge carriers with the lattice. The latter is described by kMC models, that are time-consuming but treat the charge carriers individually and can probe all relevant time and energy scales. A hybrid model that makes use of the multiple trap and release (MTR) concept in combination with the DD equations is shown to describe both steady-state space charge limited conductivity experiments and non-equilibrium time-resolved transport experiments using a single parameter set. For the investigated simulations, the DD-MTR model is in good agreement with kMC and ~10 times faster. Steady-state mobilities from DD equations have been argued to be exclusively relevant for operating OPVs while charge carrier thermalization and non-equilibrium time-dependent mobilities (although acknowledged) can be disregarded. This conclusion, based on transient photocurrent experiments with ?s time resolution, is not complete. We show that non-equilibrium kMC simulations can describe the extraction of charge carriers from subps to 100 ?s timescales with a single parameter set. The majority of the fast charge carriers, mostly non-thermalized electrons, are extracted at time scales below the resolution of the experiment. In other words, the experiment resolves only the slower fraction of the charges, predominantly holes.

Halide Perovskites

Download Halide Perovskites PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527341110
Total Pages : 312 pages
Book Rating : 4.5/5 (273 download)

DOWNLOAD NOW!


Book Synopsis Halide Perovskites by : Tze-Chien Sum

Download or read book Halide Perovskites written by Tze-Chien Sum and published by John Wiley & Sons. This book was released on 2019-03-25 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.

Charge Carrier Transport and Injection Across Organic Heterojunctions

Download Charge Carrier Transport and Injection Across Organic Heterojunctions PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Charge Carrier Transport and Injection Across Organic Heterojunctions by : Tsang Sai Wing

Download or read book Charge Carrier Transport and Injection Across Organic Heterojunctions written by Tsang Sai Wing and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Elaboration And Applications Of Metal-organic Frameworks

Download Elaboration And Applications Of Metal-organic Frameworks PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813226749
Total Pages : 730 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Elaboration And Applications Of Metal-organic Frameworks by : Shengqian Ma

Download or read book Elaboration And Applications Of Metal-organic Frameworks written by Shengqian Ma and published by World Scientific. This book was released on 2018-01-31 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title takes researchers in as well as out of the field of metal-organic framework (MOF) and then guides them on a journey to rediscover and rethink how these designer coordination polymers will influence the realm of materials science. This book opens with a look at a deeply controversial issue, MOF stability, which has plagued many systems, but ultimately has led to better materials that proved to be more robust allowing them to be investigated for multiple applications. This book successfully highlights many of these useful applications that MOFs are well adapted for. Because MOF components, inorganic and organic, can combine the best of both chemical domains, MOFs will improve our environment by removing harmful contaminants from the air and water, reduce the energy required to perform chemical reactions, partition hard to separate molecular mixtures, and form the next-generation of magnetic and electronic materials. MOFs will eventually be used for everyday activities — for monitoring or reacting to changing conditions. Readers of this book can then take note and implement MOFs in their line of research.