Author : Prem Timsina
Publisher : BPB Publications
ISBN 13 : 9355517491
Total Pages : 355 pages
Book Rating : 4.3/5 (555 download)
Book Synopsis Building Transformer Models with PyTorch 2.0 by : Prem Timsina
Download or read book Building Transformer Models with PyTorch 2.0 written by Prem Timsina and published by BPB Publications. This book was released on 2024-03-08 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Your key to transformer based NLP, vision, speech, and multimodalities KEY FEATURES ● Transformer architecture for different modalities and multimodalities. ● Practical guidelines to build and fine-tune transformer models. ● Comprehensive code samples with detailed documentation. DESCRIPTION This book covers transformer architecture for various applications including NLP, computer vision, speech processing, and predictive modeling with tabular data. It is a valuable resource for anyone looking to harness the power of transformer architecture in their machine learning projects. The book provides a step-by-step guide to building transformer models from scratch and fine-tuning pre-trained open-source models. It explores foundational model architecture, including GPT, VIT, Whisper, TabTransformer, Stable Diffusion, and the core principles for solving various problems with transformers. The book also covers transfer learning, model training, and fine-tuning, and discusses how to utilize recent models from Hugging Face. Additionally, the book explores advanced topics such as model benchmarking, multimodal learning, reinforcement learning, and deploying and serving transformer models. In conclusion, this book offers a comprehensive and thorough guide to transformer models and their various applications. WHAT YOU WILL LEARN ● Understand the core architecture of various foundational models, including single and multimodalities. ● Step-by-step approach to developing transformer-based Machine Learning models. ● Utilize various open-source models to solve your business problems. ● Train and fine-tune various open-source models using PyTorch 2.0 and the Hugging Face ecosystem. ● Deploy and serve transformer models. ● Best practices and guidelines for building transformer-based models. WHO THIS BOOK IS FOR This book caters to data scientists, Machine Learning engineers, developers, and software architects interested in the world of generative AI. TABLE OF CONTENTS 1. Transformer Architecture 2. Hugging Face Ecosystem 3. Transformer Model in PyTorch 4. Transfer Learning with PyTorch and Hugging Face 5. Large Language Models: BERT, GPT-3, and BART 6. NLP Tasks with Transformers 7. CV Model Anatomy: ViT, DETR, and DeiT 8. Computer Vision Tasks with Transformers 9. Speech Processing Model Anatomy: Whisper, SpeechT5, and Wav2Vec 10. Speech Tasks with Transformers 11. Transformer Architecture for Tabular Data Processing 12. Transformers for Tabular Data Regression and Classification 13. Multimodal Transformers, Architectures and Applications 14. Explore Reinforcement Learning for Transformer 15. Model Export, Serving, and Deployment 16. Transformer Model Interpretability, and Experimental Visualization 17. PyTorch Models: Best Practices and Debugging