Braid Foliations in Low-Dimensional Topology

Download Braid Foliations in Low-Dimensional Topology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470436604
Total Pages : 305 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Braid Foliations in Low-Dimensional Topology by : Douglas J. LaFountain

Download or read book Braid Foliations in Low-Dimensional Topology written by Douglas J. LaFountain and published by American Mathematical Soc.. This book was released on 2017-10-20 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a self-contained introduction to braid foliation techniques, which is a theory developed to study knots, links and surfaces in general 3-manifolds and more specifically in contact 3-manifolds. With style and content accessible to beginning students interested in geometric topology, each chapter centres around a key theorem or theorems.

Braid Foliations in Low-dimensional Topology

Download Braid Foliations in Low-dimensional Topology PDF Online Free

Author :
Publisher :
ISBN 13 : 9781470442682
Total Pages : pages
Book Rating : 4.4/5 (426 download)

DOWNLOAD NOW!


Book Synopsis Braid Foliations in Low-dimensional Topology by : Douglas J. LaFountain

Download or read book Braid Foliations in Low-dimensional Topology written by Douglas J. LaFountain and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a self-contained introduction to braid foliation techniques, which is a theory developed to study knots, links and surfaces in general 3-manifolds and more specifically in contact 3-manifolds. With style and content accessible to beginning students interested in geometric topology, each chapter centers around a key theorem or theorems. The particular braid foliation techniques needed to prove these theorems are introduced in parallel, so that the reader has an immediate "take-home" for the techniques involved. The reader will learn that braid foliations provide a flexible toolbox.

Low Dimensional Topology

Download Low Dimensional Topology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821886967
Total Pages : 331 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Low Dimensional Topology by : Tomasz Mrowka

Download or read book Low Dimensional Topology written by Tomasz Mrowka and published by American Mathematical Soc.. This book was released on 2009-01-01 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-dimensional topology has long been a fertile area for the interaction of many different disciplines of mathematics, including differential geometry, hyperbolic geometry, combinatorics, representation theory, global analysis, classical mechanics, and theoretical physics. The Park City Mathematics Institute summer school in 2006 explored in depth the most exciting recent aspects of this interaction, aimed at a broad audience of both graduate students and researchers. The present volume is based on lectures presented at the summer school on low-dimensional topology. These notes give fresh, concise, and high-level introductions to these developments, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field of low-dimensional topology and to senior researchers wishing to keep up with current developments. The volume begins with notes based on a special lecture by John Milnor about the history of the topology of manifolds. It also contains notes from lectures by Cameron Gordon on the basics of three-manifold topology and surgery problems, Mikhail Khovanov on his homological invariants for knots, John Etnyre on contact geometry, Ron Fintushel and Ron Stern on constructions of exotic four-manifolds, David Gabai on the hyperbolic geometry and the ending lamination theorem, Zoltan Szabo on Heegaard Floer homology for knots and three manifolds, and John Morgan on Hamilton's and Perelman's work on Ricci flow and geometrization.

One-Dimensional Ergodic Schrödinger Operators

Download One-Dimensional Ergodic Schrödinger Operators PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470456060
Total Pages : 464 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis One-Dimensional Ergodic Schrödinger Operators by : David Damanik

Download or read book One-Dimensional Ergodic Schrödinger Operators written by David Damanik and published by American Mathematical Society. This book was released on 2022-08-18 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of one-dimensional ergodic operators involves a beautiful synthesis of ideas from dynamical systems, topology, and analysis. Additionally, this setting includes many models of physical interest, including those operators that model crystals, disordered media, or quasicrystals. This field has seen substantial progress in recent decades, much of which has yet to be discussed in textbooks. Beginning with a refresher on key topics in spectral theory, this volume presents the basic theory of discrete one-dimensional Schrödinger operators with dynamically defined potentials. It also includes a self-contained introduction to the relevant aspects of ergodic theory and topological dynamics. This text is accessible to graduate students who have completed one-semester courses in measure theory and complex analysis. It is intended to serve as an introduction to the field for junior researchers and beginning graduate students as well as a reference text for people already working in this area. It is well suited for self-study and contains numerous exercises (many with hints).

Lectures on Differential Topology

Download Lectures on Differential Topology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470466740
Total Pages : 425 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Differential Topology by : Riccardo Benedetti

Download or read book Lectures on Differential Topology written by Riccardo Benedetti and published by American Mathematical Soc.. This book was released on 2021-10-27 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive introduction to the theory of smooth manifolds, maps, and fundamental associated structures with an emphasis on “bare hands” approaches, combining differential-topological cut-and-paste procedures and applications of transversality. In particular, the smooth cobordism cup-product is defined from scratch and used as the main tool in a variety of settings. After establishing the fundamentals, the book proceeds to a broad range of more advanced topics in differential topology, including degree theory, the Poincaré-Hopf index theorem, bordism-characteristic numbers, and the Pontryagin-Thom construction. Cobordism intersection forms are used to classify compact surfaces; their quadratic enhancements are developed and applied to studying the homotopy groups of spheres, the bordism group of immersed surfaces in a 3-manifold, and congruences mod 16 for the signature of intersection forms of 4-manifolds. Other topics include the high-dimensional h h-cobordism theorem stressing the role of the “Whitney trick”, a determination of the singleton bordism modules in low dimensions, and proofs of parallelizability of orientable 3-manifolds and the Lickorish-Wallace theorem. Nash manifolds and Nash's questions on the existence of real algebraic models are also discussed. This book will be useful as a textbook for beginning masters and doctoral students interested in differential topology, who have finished a standard undergraduate mathematics curriculum. It emphasizes an active learning approach, and exercises are included within the text as part of the flow of ideas. Experienced readers may use this book as a source of alternative, constructive approaches to results commonly presented in more advanced contexts with specialized techniques.

Algebraic Geometry

Download Algebraic Geometry PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470471116
Total Pages : 104 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Geometry by : Michael Artin

Download or read book Algebraic Geometry written by Michael Artin and published by American Mathematical Society. This book was released on 2022-09-21 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the geometry of complex algebraic varieties. It is intended for students who have learned algebra, analysis, and topology, as taught in standard undergraduate courses. So it is a suitable text for a beginning graduate course or an advanced undergraduate course. The book begins with a study of plane algebraic curves, then introduces affine and projective varieties, going on to dimension and constructibility. $mathcal{O}$-modules (quasicoherent sheaves) are defined without reference to sheaf theory, and their cohomology is defined axiomatically. The Riemann-Roch Theorem for curves is proved using projection to the projective line. Some of the points that aren't always treated in beginning courses are Hensel's Lemma, Chevalley's Finiteness Theorem, and the Birkhoff-Grothendieck Theorem. The book contains extensive discussions of finite group actions, lines in $mathbb{P}^3$, and double planes, and it ends with applications of the Riemann-Roch Theorem.

Lectures on Poisson Geometry

Download Lectures on Poisson Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470466678
Total Pages : 479 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Poisson Geometry by : Marius Crainic

Download or read book Lectures on Poisson Geometry written by Marius Crainic and published by American Mathematical Soc.. This book was released on 2021-10-14 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This excellent book will be very useful for students and researchers wishing to learn the basics of Poisson geometry, as well as for those who know something about the subject but wish to update and deepen their knowledge. The authors' philosophy that Poisson geometry is an amalgam of foliation theory, symplectic geometry, and Lie theory enables them to organize the book in a very coherent way. —Alan Weinstein, University of California at Berkeley This well-written book is an excellent starting point for students and researchers who want to learn about the basics of Poisson geometry. The topics covered are fundamental to the theory and avoid any drift into specialized questions; they are illustrated through a large collection of instructive and interesting exercises. The book is ideal as a graduate textbook on the subject, but also for self-study. —Eckhard Meinrenken, University of Toronto

Hyperbolic Knot Theory

Download Hyperbolic Knot Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470454998
Total Pages : 392 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Hyperbolic Knot Theory by : Jessica S. Purcell

Download or read book Hyperbolic Knot Theory written by Jessica S. Purcell and published by American Mathematical Soc.. This book was released on 2020-10-06 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to hyperbolic geometry in dimension three, with motivation and applications arising from knot theory. Hyperbolic geometry was first used as a tool to study knots by Riley and then Thurston in the 1970s. By the 1980s, combining work of Mostow and Prasad with Gordon and Luecke, it was known that a hyperbolic structure on a knot complement in the 3-sphere gives a complete knot invariant. However, it remains a difficult problem to relate the hyperbolic geometry of a knot to other invariants arising from knot theory. In particular, it is difficult to determine hyperbolic geometric information from a knot diagram, which is classically used to describe a knot. This textbook provides background on these problems, and tools to determine hyperbolic information on knots. It also includes results and state-of-the art techniques on hyperbolic geometry and knot theory to date. The book was written to be interactive, with many examples and exercises. Some important results are left to guided exercises. The level is appropriate for graduate students with a basic background in algebraic topology, particularly fundamental groups and covering spaces. Some experience with some differential topology and Riemannian geometry will also be helpful.

Download  PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 :
Total Pages : 332 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis by :

Download or read book written by and published by American Mathematical Soc.. This book was released on with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Hamilton-Jacobi Equations: Theory and Applications

Download Hamilton-Jacobi Equations: Theory and Applications PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470465558
Total Pages : 322 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Hamilton-Jacobi Equations: Theory and Applications by : Hung Vinh Tran

Download or read book Hamilton-Jacobi Equations: Theory and Applications written by Hung Vinh Tran and published by American Mathematical Soc.. This book was released on 2021-09-17 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an extensive survey of many important topics in the theory of Hamilton–Jacobi equations with particular emphasis on modern approaches and viewpoints. Firstly, the basic well-posedness theory of viscosity solutions for first-order Hamilton–Jacobi equations is covered. Then, the homogenization theory, a very active research topic since the late 1980s but not covered in any standard textbook, is discussed in depth. Afterwards, dynamical properties of solutions, the Aubry–Mather theory, and weak Kolmogorov–Arnold–Moser (KAM) theory are studied. Both dynamical and PDE approaches are introduced to investigate these theories. Connections between homogenization, dynamical aspects, and the optimal rate of convergence in homogenization theory are given as well. The book is self-contained and is useful for a course or for references. It can also serve as a gentle introductory reference to the homogenization theory.

Groups and Topological Dynamics

Download Groups and Topological Dynamics PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470471205
Total Pages : 708 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Groups and Topological Dynamics by : Volodymyr Nekrashevych

Download or read book Groups and Topological Dynamics written by Volodymyr Nekrashevych and published by American Mathematical Society. This book was released on 2022-10-11 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to group-theoretic aspects of topological dynamics such as studying groups using their actions on topological spaces, using group theory to study symbolic dynamics, and other connections between group theory and dynamical systems. One of the main applications of this approach to group theory is the study of asymptotic properties of groups such as growth and amenability. The book presents recently developed techniques of studying groups of dynamical origin using the structure of their orbits and associated groupoids of germs, applications of the iterated monodromy groups to hyperbolic dynamical systems, topological full groups and their properties, amenable groups, groups of intermediate growth, and other topics. The book is suitable for graduate students and researchers interested in group theory, transformations defined by automata, topological and holomorphic dynamics, and theory of topological groupoids. Each chapter is supplemented by exercises of various levels of complexity.

The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations

Download The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470470497
Total Pages : 235 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations by : Jacob Bedrossian

Download or read book The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations written by Jacob Bedrossian and published by American Mathematical Society. This book was released on 2022-09-21 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide beginning graduate students who completed the first two semesters of graduate-level analysis and PDE courses with a first exposure to the mathematical analysis of the incompressible Euler and Navier-Stokes equations. The book gives a concise introduction to the fundamental results in the well-posedness theory of these PDEs, leaving aside some of the technical challenges presented by bounded domains or by intricate functional spaces. Chapters 1 and 2 cover the fundamentals of the Euler theory: derivation, Eulerian and Lagrangian perspectives, vorticity, special solutions, existence theory for smooth solutions, and blowup criteria. Chapters 3, 4, and 5 cover the fundamentals of the Navier-Stokes theory: derivation, special solutions, existence theory for strong solutions, Leray theory of weak solutions, weak-strong uniqueness, existence theory of mild solutions, and Prodi-Serrin regularity criteria. Chapter 6 provides a short guide to the must-read topics, including active research directions, for an advanced graduate student working in incompressible fluids. It may be used as a roadmap for a topics course in a subsequent semester. The appendix recalls basic results from real, harmonic, and functional analysis. Each chapter concludes with exercises, making the text suitable for a one-semester graduate course. Prerequisites to this book are the first two semesters of graduate-level analysis and PDE courses.

Invitation to Nonlinear Algebra

Download Invitation to Nonlinear Algebra PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470465515
Total Pages : 226 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Invitation to Nonlinear Algebra by : Mateusz Michałek

Download or read book Invitation to Nonlinear Algebra written by Mateusz Michałek and published by American Mathematical Soc.. This book was released on 2021-03-22 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear algebra provides modern mathematical tools to address challenges arising in the sciences and engineering. It is useful everywhere, where polynomials appear: in particular, data and computational sciences, statistics, physics, optimization. The book offers an invitation to this broad and fast-developing area. It is not an extensive encyclopedia of known results, but rather a first introduction to the subject, allowing the reader to enter into more advanced topics. It was designed as the next step after linear algebra and well before abstract algebraic geometry. The book presents both classical topics—like the Nullstellensatz and primary decomposition—and more modern ones—like tropical geometry and semidefinite programming. The focus lies on interactions and applications. Each of the thirteen chapters introduces fundamental concepts. The book may be used for a one-semester course, and the over 200 exercises will help the readers to deepen their understanding of the subject.

Topics in Applied Mathematics and Modeling

Download Topics in Applied Mathematics and Modeling PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 147046991X
Total Pages : 228 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Topics in Applied Mathematics and Modeling by : Oscar Gonzalez

Download or read book Topics in Applied Mathematics and Modeling written by Oscar Gonzalez and published by American Mathematical Society. This book was released on 2022-12-05 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis and interpretation of mathematical models is an essential part of the modern scientific process. Topics in Applied Mathematics and Modeling is designed for a one-semester course in this area aimed at a wide undergraduate audience in the mathematical sciences. The prerequisite for access is exposure to the central ideas of linear algebra and ordinary differential equations. The subjects explored in the book are dimensional analysis and scaling, dynamical systems, perturbation methods, and calculus of variations. These are immense subjects of wide applicability and a fertile ground for critical thinking and quantitative reasoning, in which every student of mathematics should have some experience. Students who use this book will enhance their understanding of mathematics, acquire tools to explore meaningful scientific problems, and increase their preparedness for future research and advanced studies. The highlights of the book are case studies and mini-projects, which illustrate the mathematics in action. The book also contains a wealth of examples, figures, and regular exercises to support teaching and learning. The book includes opportunities for computer-aided explorations, and each chapter contains a bibliography with references covering further details of the material.

Shock Waves

Download Shock Waves PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470465671
Total Pages : 437 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Shock Waves by : Tai-Ping Liu

Download or read book Shock Waves written by Tai-Ping Liu and published by American Mathematical Soc.. This book was released on 2021-10-12 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the fundamentals of the shock wave theory. The first part of the book, Chapters 1 through 5, covers the basic elements of the shock wave theory by analyzing the scalar conservation laws. The main focus of the analysis is on the explicit solution behavior. This first part of the book requires only a course in multi-variable calculus, and can be used as a text for an undergraduate topics course. In the second part of the book, Chapters 6 through 9, this general theory is used to study systems of hyperbolic conservation laws. This is a most significant well-posedness theory for weak solutions of quasilinear evolutionary partial differential equations. The final part of the book, Chapters 10 through 14, returns to the original subject of the shock wave theory by focusing on specific physical models. Potentially interesting questions and research directions are also raised in these chapters. The book can serve as an introductory text for advanced undergraduate students and for graduate students in mathematics, engineering, and physical sciences. Each chapter ends with suggestions for further reading and exercises for students.

Ultrafilters Throughout Mathematics

Download Ultrafilters Throughout Mathematics PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470469006
Total Pages : 399 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Ultrafilters Throughout Mathematics by : Isaac Goldbring

Download or read book Ultrafilters Throughout Mathematics written by Isaac Goldbring and published by American Mathematical Society. This book was released on 2022-06-13 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultrafilters and ultraproducts provide a useful generalization of the ordinary limit processes which have applications to many areas of mathematics. Typically, this topic is presented to students in specialized courses such as logic, functional analysis, or geometric group theory. In this book, the basic facts about ultrafilters and ultraproducts are presented to readers with no prior knowledge of the subject and then these techniques are applied to a wide variety of topics. The first part of the book deals solely with ultrafilters and presents applications to voting theory, combinatorics, and topology, while also dealing also with foundational issues. The second part presents the classical ultraproduct construction and provides applications to algebra, number theory, and nonstandard analysis. The third part discusses a metric generalization of the ultraproduct construction and gives example applications to geometric group theory and functional analysis. The final section returns to more advanced topics of a more foundational nature. The book should be of interest to undergraduates, graduate students, and researchers from all areas of mathematics interested in learning how ultrafilters and ultraproducts can be applied to their specialty.

Extrinsic Geometric Flows

Download Extrinsic Geometric Flows PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470464578
Total Pages : 790 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Extrinsic Geometric Flows by : Ben Andrews

Download or read book Extrinsic Geometric Flows written by Ben Andrews and published by American Mathematical Society. This book was released on 2022-03-02 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.