Boundary and Eigenvalue Problems in Mathematical Physics

Download Boundary and Eigenvalue Problems in Mathematical Physics PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486150925
Total Pages : 420 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Boundary and Eigenvalue Problems in Mathematical Physics by : Hans Sagan

Download or read book Boundary and Eigenvalue Problems in Mathematical Physics written by Hans Sagan and published by Courier Corporation. This book was released on 2012-04-26 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Well-known text uses a few basic concepts to solve such problems as the vibrating string, vibrating membrane, and heat conduction. Problems and solutions. 31 illustrations.

Boundary and Eigenvalue Problems in Mathematical Physics

Download Boundary and Eigenvalue Problems in Mathematical Physics PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 9780486661322
Total Pages : 420 pages
Book Rating : 4.6/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Boundary and Eigenvalue Problems in Mathematical Physics by : Hans Sagan

Download or read book Boundary and Eigenvalue Problems in Mathematical Physics written by Hans Sagan and published by Courier Corporation. This book was released on 1989-01-01 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This well-known advanced undergraduate- and graduate-level text uses a few basic concepts to solve and develop complete answers to linear homogeneous partial differential equations such as the problems of the vibrating string, the vibrating membrane, and heat conduction. With problems and solutions. 31 illustrations.

The Boundary Value Problems of Mathematical Physics

Download The Boundary Value Problems of Mathematical Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475743173
Total Pages : 350 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis The Boundary Value Problems of Mathematical Physics by : O.A. Ladyzhenskaya

Download or read book The Boundary Value Problems of Mathematical Physics written by O.A. Ladyzhenskaya and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present edition I have included "Supplements and Problems" located at the end of each chapter. This was done with the aim of illustrating the possibilities of the methods contained in the book, as well as with the desire to make good on what I have attempted to do over the course of many years for my students-to awaken their creativity, providing topics for independent work. The source of my own initial research was the famous two-volume book Methods of Mathematical Physics by D. Hilbert and R. Courant, and a series of original articles and surveys on partial differential equations and their applications to problems in theoretical mechanics and physics. The works of K. o. Friedrichs, which were in keeping with my own perception of the subject, had an especially strong influence on me. I was guided by the desire to prove, as simply as possible, that, like systems of n linear algebraic equations in n unknowns, the solvability of basic boundary value (and initial-boundary value) problems for partial differential equations is a consequence of the uniqueness theorems in a "sufficiently large" function space. This desire was successfully realized thanks to the introduction of various classes of general solutions and to an elaboration of the methods of proof for the corresponding uniqueness theorems. This was accomplished on the basis of comparatively simple integral inequalities for arbitrary functions and of a priori estimates of the solutions of the problems without enlisting any special representations of those solutions.

Mathematical Physics with Partial Differential Equations

Download Mathematical Physics with Partial Differential Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0123869110
Total Pages : 431 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Physics with Partial Differential Equations by : James Kirkwood

Download or read book Mathematical Physics with Partial Differential Equations written by James Kirkwood and published by Academic Press. This book was released on 2012-01-20 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.

Integral Representations For Spatial Models of Mathematical Physics

Download Integral Representations For Spatial Models of Mathematical Physics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000158098
Total Pages : 258 pages
Book Rating : 4.0/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Integral Representations For Spatial Models of Mathematical Physics by : Vladislav V Kravchenko

Download or read book Integral Representations For Spatial Models of Mathematical Physics written by Vladislav V Kravchenko and published by CRC Press. This book was released on 2020-11-26 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a new mathematical theory for the treatment of an ample series of spatial problems of electrodynamics, particle physics, quantum mechanics and elasticity theory. This technique proves to be as powerful for solving the spatial problems of mathematical physics as complex analysis is for solving planar problems. The main analytic tool of the book, a non-harmonic version of hypercomplex analysis recently developed by the authors, is presented in detail. There are given applications of this theory to the boundary value problems of electrodynamics and elasticity theory as well as to the problem of quark confinement. A new approach to the linearization of special classes of the self-duality equation is also considered. Detailed proofs are given throughout. The book contains an extensive bibliography on closely related topics. This book will be of particular interest to academic and professional specialists and students in mathematics and physics who are interested in integral representations for partial differential equations. The book is self-contained and could be used as a main reference for special course seminars on the subject.

Methods for Solving Mathematical Physics Problems

Download Methods for Solving Mathematical Physics Problems PDF Online Free

Author :
Publisher : Cambridge Int Science Publishing
ISBN 13 : 1904602053
Total Pages : 335 pages
Book Rating : 4.9/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Methods for Solving Mathematical Physics Problems by : Valeriĭ Ivanovich Agoshkov

Download or read book Methods for Solving Mathematical Physics Problems written by Valeriĭ Ivanovich Agoshkov and published by Cambridge Int Science Publishing. This book was released on 2006 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the book is to present to a wide range of readers (students, postgraduates, scientists, engineers, etc.) basic information on one of the directions of mathematics, methods for solving mathematical physics problems. The authors have tried to select for the book methods that have become classical and generally accepted. However, some of the current versions of these methods may be missing from the book because they require special knowledge. The book is of the handbook-teaching type. On the one hand, the book describes the main definitions, the concepts of the examined methods and approaches used in them, and also the results and claims obtained in every specific case. On the other hand, proofs of the majority of these results are not presented and they are given only in the simplest (methodological) cases. Another special feature of the book is the inclusion of many examples of application of the methods for solving specific mathematical physics problems of applied nature used in various areas of science and social activity, such as power engineering, environmental protection, hydrodynamics, elasticity theory, etc. This should provide additional information on possible applications of these methods. To provide complete information, the book includes a chapter dealing with the main problems of mathematical physics, together with the results obtained in functional analysis and boundary-value theory for equations with partial derivatives.

A Unified Approach to Boundary Value Problems

Download A Unified Approach to Boundary Value Problems PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 089871706X
Total Pages : 328 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis A Unified Approach to Boundary Value Problems by : Athanassios S. Fokas

Download or read book A Unified Approach to Boundary Value Problems written by Athanassios S. Fokas and published by SIAM. This book was released on 2008-01-01 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a new approach to analysing initial-boundary value problems for integrable partial differential equations.

Mathematics for Physics

Download Mathematics for Physics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139480618
Total Pages : 821 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Mathematics for Physics by : Michael Stone

Download or read book Mathematics for Physics written by Michael Stone and published by Cambridge University Press. This book was released on 2009-07-09 with total page 821 pages. Available in PDF, EPUB and Kindle. Book excerpt: An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.

Mathematics for the Physical Sciences

Download Mathematics for the Physical Sciences PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110426242
Total Pages : 498 pages
Book Rating : 4.1/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Mathematics for the Physical Sciences by : Leslie Copley

Download or read book Mathematics for the Physical Sciences written by Leslie Copley and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-03-30 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book begins with a thorough introduction to complex analysis, which is then used to understand the properties of ordinary differential equations and their solutions. The latter are obtained in both series and integral representations. Integral transforms are introduced, providing an opportunity to complement complex analysis with techniques that flow from an algebraic approach. This moves naturally into a discussion of eigenvalue and boundary vale problems. A thorough discussion of multi-dimensional boundary value problems then introduces the reader to the fundamental partial differential equations and “special functions” of mathematical physics. Moving to non-homogeneous boundary value problems the reader is presented with an analysis of Green’s functions from both analytical and algebraic points of view. This leads to a concluding chapter on integral equations.

Green's Functions and Boundary Value Problems

Download Green's Functions and Boundary Value Problems PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470906529
Total Pages : 883 pages
Book Rating : 4.4/5 (79 download)

DOWNLOAD NOW!


Book Synopsis Green's Functions and Boundary Value Problems by : Ivar Stakgold

Download or read book Green's Functions and Boundary Value Problems written by Ivar Stakgold and published by John Wiley & Sons. This book was released on 2011-03-01 with total page 883 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Second Edition "This book is an excellent introduction to the wide field of boundary value problems."—Journal of Engineering Mathematics "No doubt this textbook will be useful for both students and research workers."—Mathematical Reviews A new edition of the highly-acclaimed guide to boundary value problems, now featuring modern computational methods and approximation theory Green's Functions and Boundary Value Problems, Third Edition continues the tradition of the two prior editions by providing mathematical techniques for the use of differential and integral equations to tackle important problems in applied mathematics, the physical sciences, and engineering. This new edition presents mathematical concepts and quantitative tools that are essential for effective use of modern computational methods that play a key role in the practical solution of boundary value problems. With a careful blend of theory and applications, the authors successfully bridge the gap between real analysis, functional analysis, nonlinear analysis, nonlinear partial differential equations, integral equations, approximation theory, and numerical analysis to provide a comprehensive foundation for understanding and analyzing core mathematical and computational modeling problems. Thoroughly updated and revised to reflect recent developments, the book includes an extensive new chapter on the modern tools of computational mathematics for boundary value problems. The Third Edition features numerous new topics, including: Nonlinear analysis tools for Banach spaces Finite element and related discretizations Best and near-best approximation in Banach spaces Iterative methods for discretized equations Overview of Sobolev and Besov space linear Methods for nonlinear equations Applications to nonlinear elliptic equations In addition, various topics have been substantially expanded, and new material on weak derivatives and Sobolev spaces, the Hahn-Banach theorem, reflexive Banach spaces, the Banach Schauder and Banach-Steinhaus theorems, and the Lax-Milgram theorem has been incorporated into the book. New and revised exercises found throughout allow readers to develop their own problem-solving skills, and the updated bibliographies in each chapter provide an extensive resource for new and emerging research and applications. With its careful balance of mathematics and meaningful applications, Green's Functions and Boundary Value Problems, Third Edition is an excellent book for courses on applied analysis and boundary value problems in partial differential equations at the graduate level. It is also a valuable reference for mathematicians, physicists, engineers, and scientists who use applied mathematics in their everyday work.

Partial Differential Equations of Mathematical Physics

Download Partial Differential Equations of Mathematical Physics PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 9780486659640
Total Pages : 452 pages
Book Rating : 4.6/5 (596 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations of Mathematical Physics by : S. L. Sobolev

Download or read book Partial Differential Equations of Mathematical Physics written by S. L. Sobolev and published by Courier Corporation. This book was released on 1964-01-01 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.

Mathematical Methods in Physics

Download Mathematical Methods in Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461200490
Total Pages : 469 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Methods in Physics by : Philippe Blanchard

Download or read book Mathematical Methods in Physics written by Philippe Blanchard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics has long been regarded as a wellspring of mathematical problems. Mathematical Methods in Physics is a self-contained presentation, driven by historic motivations, excellent examples, detailed proofs, and a focus on those parts of mathematics that are needed in more ambitious courses on quantum mechanics and classical and quantum field theory. Aimed primarily at a broad community of graduate students in mathematics, mathematical physics, physics and engineering, as well as researchers in these disciplines.

Partial Differential Equations and Boundary-Value Problems with Applications

Download Partial Differential Equations and Boundary-Value Problems with Applications PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821868896
Total Pages : 545 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations and Boundary-Value Problems with Applications by : Mark A. Pinsky

Download or read book Partial Differential Equations and Boundary-Value Problems with Applications written by Mark A. Pinsky and published by American Mathematical Soc.. This book was released on 2011 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.

Handbook of Linear Partial Differential Equations for Engineers and Scientists

Download Handbook of Linear Partial Differential Equations for Engineers and Scientists PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420035320
Total Pages : 800 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Linear Partial Differential Equations for Engineers and Scientists by : Andrei D. Polyanin

Download or read book Handbook of Linear Partial Differential Equations for Engineers and Scientists written by Andrei D. Polyanin and published by CRC Press. This book was released on 2001-11-28 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with

Resurgence, Physics and Numbers

Download Resurgence, Physics and Numbers PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 8876426132
Total Pages : 390 pages
Book Rating : 4.8/5 (764 download)

DOWNLOAD NOW!


Book Synopsis Resurgence, Physics and Numbers by : Frédéric Fauvet

Download or read book Resurgence, Physics and Numbers written by Frédéric Fauvet and published by Springer. This book was released on 2017-11-17 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is issued from a conference around resurgent functions in Physics and multiple zetavalues, which was held at the Centro di Ricerca Matematica Ennio de Giorgi in Pisa, on May 18-22, 2015. This meeting originally stemmed from the impressive upsurge of interest for Jean Ecalle's alien calculus in Physics, in the last years – a trend that has considerably developed since then. The volume contains both original research papers and surveys, by leading experts in the field, reflecting the themes that were tackled at this event: Stokes phenomenon and resurgence, in various mathematical and physical contexts but also related constructions in algebraic combinatorics and results concerning numbers, specifically multiple zetavalues.

The Hypercircle in Mathematical Physics

Download The Hypercircle in Mathematical Physics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107666554
Total Pages : 439 pages
Book Rating : 4.1/5 (76 download)

DOWNLOAD NOW!


Book Synopsis The Hypercircle in Mathematical Physics by : J. L. Synge

Download or read book The Hypercircle in Mathematical Physics written by J. L. Synge and published by Cambridge University Press. This book was released on 2012-03-22 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1957 book was written to help physicists and engineers solve partial differential equations subject to boundary conditions. The complexities of calculation are illuminated throughout by simple, intuitive geometrical pictures. This book will be of value to anyone with an interest in solutions to boundary value problems in mathematical physics.

Boundary Value Problems of Mathematical Physics

Download Boundary Value Problems of Mathematical Physics PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611972388
Total Pages : 1156 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Boundary Value Problems of Mathematical Physics by : Ivar Stakgold

Download or read book Boundary Value Problems of Mathematical Physics written by Ivar Stakgold and published by SIAM. This book was released on 2000-06-30 with total page 1156 pages. Available in PDF, EPUB and Kindle. Book excerpt: For more than 30 years, this two-volume set has helped prepare graduate students to use partial differential equations and integral equations to handle significant problems arising in applied mathematics, engineering, and the physical sciences. Originally published in 1967, this graduate-level introduction is devoted to the mathematics needed for the modern approach to boundary value problems using Green's functions and using eigenvalue expansions. Now a part of SIAM's Classics series, these volumes contain a large number of concrete, interesting examples of boundary value problems for partial differential equations that cover a variety of applications that are still relevant today. For example, there is substantial treatment of the Helmholtz equation and scattering theory?subjects that play a central role in contemporary inverse problems in acoustics and electromagnetic theory.