Asymptotic Invariants of Graded Systems of Ideals and Linear Systems on Projective Bundles

Download Asymptotic Invariants of Graded Systems of Ideals and Linear Systems on Projective Bundles PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 226 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Asymptotic Invariants of Graded Systems of Ideals and Linear Systems on Projective Bundles by : Alexandre Wolfe

Download or read book Asymptotic Invariants of Graded Systems of Ideals and Linear Systems on Projective Bundles written by Alexandre Wolfe and published by . This book was released on 2005 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Annales de l'Institut Fourier

Download Annales de l'Institut Fourier PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 748 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Annales de l'Institut Fourier by :

Download or read book Annales de l'Institut Fourier written by and published by . This book was released on 2006 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Dissertation Abstracts International

Download Dissertation Abstracts International PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 848 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Dissertation Abstracts International by :

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2006 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Pure and Applied Mathematics Quarterly

Download Pure and Applied Mathematics Quarterly PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 444 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Pure and Applied Mathematics Quarterly by :

Download or read book Pure and Applied Mathematics Quarterly written by and published by . This book was released on 2005 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Mathematical Reviews

Download Mathematical Reviews PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 804 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Reviews by :

Download or read book Mathematical Reviews written by and published by . This book was released on 2007 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Determinantal Rings

Download Determinantal Rings PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540392742
Total Pages : 246 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Determinantal Rings by : Winfried Bruns

Download or read book Determinantal Rings written by Winfried Bruns and published by Springer. This book was released on 2006-11-14 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.

Syzygies and Hilbert Functions

Download Syzygies and Hilbert Functions PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420050915
Total Pages : 305 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Syzygies and Hilbert Functions by : Irena Peeva

Download or read book Syzygies and Hilbert Functions written by Irena Peeva and published by CRC Press. This book was released on 2007-03-20 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hilbert functions and resolutions are both central objects in commutative algebra and fruitful tools in the fields of algebraic geometry, combinatorics, commutative algebra, and computational algebra. Spurred by recent research in this area, Syzygies and Hilbert Functions explores fresh developments in the field as well as fundamental concepts.

Computations in Algebraic Geometry with Macaulay 2

Download Computations in Algebraic Geometry with Macaulay 2 PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540422303
Total Pages : 354 pages
Book Rating : 4.4/5 (223 download)

DOWNLOAD NOW!


Book Synopsis Computations in Algebraic Geometry with Macaulay 2 by : David Eisenbud

Download or read book Computations in Algebraic Geometry with Macaulay 2 written by David Eisenbud and published by Springer Science & Business Media. This book was released on 2001-09-25 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents algorithmic tools for algebraic geometry, with experimental applications. It also introduces Macaulay 2, a computer algebra system supporting research in algebraic geometry, commutative algebra, and their applications. The algorithmic tools presented here are designed to serve readers wishing to bring such tools to bear on their own problems. The first part of the book covers Macaulay 2 using concrete applications; the second emphasizes details of the mathematics.

Exterior Differential Systems

Download Exterior Differential Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461397146
Total Pages : 483 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Exterior Differential Systems by : Robert L. Bryant

Download or read book Exterior Differential Systems written by Robert L. Bryant and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.

Geometry and Complexity Theory

Download Geometry and Complexity Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110819141X
Total Pages : 353 pages
Book Rating : 4.1/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Complexity Theory by : J. M. Landsberg

Download or read book Geometry and Complexity Theory written by J. M. Landsberg and published by Cambridge University Press. This book was released on 2017-09-28 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.

Contributions to Algebraic Geometry

Download Contributions to Algebraic Geometry PDF Online Free

Author :
Publisher : European Mathematical Society
ISBN 13 : 9783037191149
Total Pages : 520 pages
Book Rating : 4.1/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Contributions to Algebraic Geometry by : Piotr Pragacz

Download or read book Contributions to Algebraic Geometry written by Piotr Pragacz and published by European Mathematical Society. This book was released on 2012 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this volume are the outcome of the Impanga Conference on Algebraic Geometry in 2010 at the Banach Center in Bedlewo. The following spectrum of topics is covered: K3 surfaces and Enriques surfaces Prym varieties and their moduli invariants of singularities in birational geometry differential forms on singular spaces Minimal Model Program linear systems toric varieties Seshadri and packing constants equivariant cohomology Thom polynomials arithmetic questions The main purpose of the volume is to give comprehensive introductions to the above topics, starting from an elementary level and ending with a discussion of current research. The first four topics are represented by the notes from the mini courses held during the conference. In the articles, the reader will find classical results and methods, as well as modern ones. This book is addressed to researchers and graduate students in algebraic geometry, singularity theory, and algebraic topology. Most of the material in this volume has not yet appeared in book form.

Cartan for Beginners

Download Cartan for Beginners PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821833758
Total Pages : 394 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Cartan for Beginners by : Thomas Andrew Ivey

Download or read book Cartan for Beginners written by Thomas Andrew Ivey and published by American Mathematical Soc.. This book was released on 2003 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.

Mirror Symmetry

Download Mirror Symmetry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821829556
Total Pages : 954 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Mirror Symmetry by : Kentaro Hori

Download or read book Mirror Symmetry written by Kentaro Hori and published by American Mathematical Soc.. This book was released on 2003 with total page 954 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.

Positivity in Algebraic Geometry I

Download Positivity in Algebraic Geometry I PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540225331
Total Pages : 414 pages
Book Rating : 4.2/5 (253 download)

DOWNLOAD NOW!


Book Synopsis Positivity in Algebraic Geometry I by : R.K. Lazarsfeld

Download or read book Positivity in Algebraic Geometry I written by R.K. Lazarsfeld and published by Springer Science & Business Media. This book was released on 2004-08-24 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.

Contact and Symplectic Topology

Download Contact and Symplectic Topology PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3319020366
Total Pages : 538 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Contact and Symplectic Topology by : Frédéric Bourgeois

Download or read book Contact and Symplectic Topology written by Frédéric Bourgeois and published by Springer Science & Business Media. This book was released on 2014-03-10 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.

The Geometry of Moduli Spaces of Sheaves

Download The Geometry of Moduli Spaces of Sheaves PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139485822
Total Pages : 345 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Moduli Spaces of Sheaves by : Daniel Huybrechts

Download or read book The Geometry of Moduli Spaces of Sheaves written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2010-05-27 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.

The Geometry of Syzygies

Download The Geometry of Syzygies PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387264566
Total Pages : 254 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Syzygies by : David Eisenbud

Download or read book The Geometry of Syzygies written by David Eisenbud and published by Springer Science & Business Media. This book was released on 2006-10-28 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: First textbook-level account of basic examples and techniques in this area. Suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. David Eisenbud is a well-known mathematician and current president of the American Mathematical Society, as well as a successful Springer author.