Asymmetric Kernel Smoothing

Download Asymmetric Kernel Smoothing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811054665
Total Pages : 117 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Asymmetric Kernel Smoothing by : Masayuki Hirukawa

Download or read book Asymmetric Kernel Smoothing written by Masayuki Hirukawa and published by Springer. This book was released on 2018-06-08 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to provide an accessible and comprehensive introduction to a newly developed smoothing technique using asymmetric kernel functions. Further, it discusses the statistical properties of estimators and test statistics using asymmetric kernels. The topics addressed include the bias-variance tradeoff, smoothing parameter choices, achieving rate improvements with bias reduction techniques, and estimation with weakly dependent data. Further, the large- and finite-sample properties of estimators and test statistics smoothed by asymmetric kernels are compared with those smoothed by symmetric kernels. Lastly, the book addresses the applications of asymmetric kernel estimation and testing to various forms of nonnegative economic and financial data. Until recently, the most popularly chosen nonparametric methods used symmetric kernel functions to estimate probability density functions of symmetric distributions with unbounded support. Yet many types of economic and financial data are nonnegative and violate the presumed conditions of conventional methods. Examples include incomes, wages, short-term interest rates, and insurance claims. Such observations are often concentrated near the boundary and have long tails with sparse data. Smoothing with asymmetric kernel functions has increasingly gained attention, because the approach successfully addresses the issues arising from distributions that have natural boundaries at the origin and heavy positive skewness. Offering an overview of recently developed kernel methods, complemented by intuitive explanations and mathematical proofs, this book is highly recommended to all readers seeking an in-depth and up-to-date guide to nonparametric estimation methods employing asymmetric kernel smoothing.

Nonparametric Econometrics

Download Nonparametric Econometrics PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400841062
Total Pages : 769 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Econometrics by : Qi Li

Download or read book Nonparametric Econometrics written by Qi Li and published by Princeton University Press. This book was released on 2011-10-09 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.

Kernel Smoothing

Download Kernel Smoothing PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111845605X
Total Pages : 272 pages
Book Rating : 4.1/5 (184 download)

DOWNLOAD NOW!


Book Synopsis Kernel Smoothing by : Sucharita Ghosh

Download or read book Kernel Smoothing written by Sucharita Ghosh and published by John Wiley & Sons. This book was released on 2018-01-09 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive theoretical overview of kernel smoothing methods with motivating examples Kernel smoothing is a flexible nonparametric curve estimation method that is applicable when parametric descriptions of the data are not sufficiently adequate. This book explores theory and methods of kernel smoothing in a variety of contexts, considering independent and correlated data e.g. with short-memory and long-memory correlations, as well as non-Gaussian data that are transformations of latent Gaussian processes. These types of data occur in many fields of research, e.g. the natural and the environmental sciences, and others. Nonparametric density estimation, nonparametric and semiparametric regression, trend and surface estimation in particular for time series and spatial data and other topics such as rapid change points, robustness etc. are introduced alongside a study of their theoretical properties and optimality issues, such as consistency and bandwidth selection. Addressing a variety of topics, Kernel Smoothing: Principles, Methods and Applications offers a user-friendly presentation of the mathematical content so that the reader can directly implement the formulas using any appropriate software. The overall aim of the book is to describe the methods and their theoretical backgrounds, while maintaining an analytically simple approach and including motivating examples—making it extremely useful in many sciences such as geophysics, climate research, forestry, ecology, and other natural and life sciences, as well as in finance, sociology, and engineering. A simple and analytical description of kernel smoothing methods in various contexts Presents the basics as well as new developments Includes simulated and real data examples Kernel Smoothing: Principles, Methods and Applications is a textbook for senior undergraduate and graduate students in statistics, as well as a reference book for applied statisticians and advanced researchers.

Nonparametric Kernel Density Estimation and Its Computational Aspects

Download Nonparametric Kernel Density Estimation and Its Computational Aspects PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319716883
Total Pages : 197 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Kernel Density Estimation and Its Computational Aspects by : Artur Gramacki

Download or read book Nonparametric Kernel Density Estimation and Its Computational Aspects written by Artur Gramacki and published by Springer. This book was released on 2017-12-21 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes computational problems related to kernel density estimation (KDE) – one of the most important and widely used data smoothing techniques. A very detailed description of novel FFT-based algorithms for both KDE computations and bandwidth selection are presented. The theory of KDE appears to have matured and is now well developed and understood. However, there is not much progress observed in terms of performance improvements. This book is an attempt to remedy this. The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects. The book contains both some background and much more sophisticated material, hence also more experienced researchers in the KDE area may find it interesting. The presented material is richly illustrated with many numerical examples using both artificial and real datasets. Also, a number of practical applications related to KDE are presented.

Density Estimation for Statistics and Data Analysis

Download Density Estimation for Statistics and Data Analysis PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351456172
Total Pages : 176 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Density Estimation for Statistics and Data Analysis by : Bernard. W. Silverman

Download or read book Density Estimation for Statistics and Data Analysis written by Bernard. W. Silverman and published by Routledge. This book was released on 2018-02-19 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although there has been a surge of interest in density estimation in recent years, much of the published research has been concerned with purely technical matters with insufficient emphasis given to the technique's practical value. Furthermore, the subject has been rather inaccessible to the general statistician. The account presented in this book places emphasis on topics of methodological importance, in the hope that this will facilitate broader practical application of density estimation and also encourage research into relevant theoretical work. The book also provides an introduction to the subject for those with general interests in statistics. The important role of density estimation as a graphical technique is reflected by the inclusion of more than 50 graphs and figures throughout the text. Several contexts in which density estimation can be used are discussed, including the exploration and presentation of data, nonparametric discriminant analysis, cluster analysis, simulation and the bootstrap, bump hunting, projection pursuit, and the estimation of hazard rates and other quantities that depend on the density. This book includes general survey of methods available for density estimation. The Kernel method, both for univariate and multivariate data, is discussed in detail, with particular emphasis on ways of deciding how much to smooth and on computation aspects. Attention is also given to adaptive methods, which smooth to a greater degree in the tails of the distribution, and to methods based on the idea of penalized likelihood.

Statistical Inference Based on Kernel Distribution Function Estimators

Download Statistical Inference Based on Kernel Distribution Function Estimators PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819918626
Total Pages : 103 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Statistical Inference Based on Kernel Distribution Function Estimators by : Rizky Reza Fauzi

Download or read book Statistical Inference Based on Kernel Distribution Function Estimators written by Rizky Reza Fauzi and published by Springer Nature. This book was released on 2023-05-31 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a study of statistical inferences based on the kernel-type estimators of distribution functions. The inferences involve matters such as quantile estimation, nonparametric tests, and mean residual life expectation, to name just some. Convergence rates for the kernel estimators of density functions are slower than ordinary parametric estimators, which have root-n consistency. If the appropriate kernel function is used, the kernel estimators of the distribution functions recover the root-n consistency, and the inferences based on kernel distribution estimators have root-n consistency. Further, the kernel-type estimator produces smooth estimation results. The estimators based on the empirical distribution function have discrete distribution, and the normal approximation cannot be improved—that is, the validity of the Edgeworth expansion cannot be proved. If the support of the population density function is bounded, there is a boundary problem, namely the estimator does not have consistency near the boundary. The book also contains a study of the mean squared errors of the estimators and the Edgeworth expansion for quantile estimators.

Kernel Smoothing in MATLAB

Download Kernel Smoothing in MATLAB PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814405485
Total Pages : 242 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Kernel Smoothing in MATLAB by : Ivana Horová

Download or read book Kernel Smoothing in MATLAB written by Ivana Horová and published by World Scientific. This book was released on 2012 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary: Offers a comprehensive overview of statistical theory and emphases the implementation of presented methods in Matlab. This title contains various Matlab scripts useful for kernel smoothing of density, cumulative distribution function, regression function, hazard function, indices of quality and bivariate density.

Kernel Smoothing

Download Kernel Smoothing PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482216124
Total Pages : 227 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Kernel Smoothing by : M.P. Wand

Download or read book Kernel Smoothing written by M.P. Wand and published by CRC Press. This book was released on 1994-12-01 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kernel smoothing refers to a general methodology for recovery of underlying structure in data sets. The basic principle is that local averaging or smoothing is performed with respect to a kernel function. This book provides uninitiated readers with a feeling for the principles, applications, and analysis of kernel smoothers. This is facilita

Nonparametric Statistics

Download Nonparametric Statistics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319969412
Total Pages : 388 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Statistics by : Patrice Bertail

Download or read book Nonparametric Statistics written by Patrice Bertail and published by Springer. This book was released on 2019-03-08 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the latest advances and trends in nonparametric statistics, and gathers selected and peer-reviewed contributions from the 3rd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Avignon, France on June 11-16, 2016. It covers a broad range of nonparametric statistical methods, from density estimation, survey sampling, resampling methods, kernel methods and extreme values, to statistical learning and classification, both in the standard i.i.d. case and for dependent data, including big data. The International Society for Nonparametric Statistics is uniquely global, and its international conferences are intended to foster the exchange of ideas and the latest advances among researchers from around the world, in cooperation with established statistical societies such as the Institute of Mathematical Statistics, the Bernoulli Society and the International Statistical Institute. The 3rd ISNPS conference in Avignon attracted more than 400 researchers from around the globe, and contributed to the further development and dissemination of nonparametric statistics knowledge.

Multivariate Kernel Smoothing and Its Applications

Download Multivariate Kernel Smoothing and Its Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429939132
Total Pages : 255 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Multivariate Kernel Smoothing and Its Applications by : José E. Chacón

Download or read book Multivariate Kernel Smoothing and Its Applications written by José E. Chacón and published by CRC Press. This book was released on 2018-05-08 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kernel smoothing has greatly evolved since its inception to become an essential methodology in the data science tool kit for the 21st century. Its widespread adoption is due to its fundamental role for multivariate exploratory data analysis, as well as the crucial role it plays in composite solutions to complex data challenges. Multivariate Kernel Smoothing and Its Applications offers a comprehensive overview of both aspects. It begins with a thorough exposition of the approaches to achieve the two basic goals of estimating probability density functions and their derivatives. The focus then turns to the applications of these approaches to more complex data analysis goals, many with a geometric/topological flavour, such as level set estimation, clustering (unsupervised learning), principal curves, and feature significance. Other topics, while not direct applications of density (derivative) estimation but sharing many commonalities with the previous settings, include classification (supervised learning), nearest neighbour estimation, and deconvolution for data observed with error. For a data scientist, each chapter contains illustrative Open data examples that are analysed by the most appropriate kernel smoothing method. The emphasis is always placed on an intuitive understanding of the data provided by the accompanying statistical visualisations. For a reader wishing to investigate further the details of their underlying statistical reasoning, a graduated exposition to a unified theoretical framework is provided. The algorithms for efficient software implementation are also discussed. José E. Chacón is an associate professor at the Department of Mathematics of the Universidad de Extremadura in Spain. Tarn Duong is a Senior Data Scientist for a start-up which provides short distance carpooling services in France. Both authors have made important contributions to kernel smoothing research over the last couple of decades.

Handbook of Econometrics

Download Handbook of Econometrics PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444887660
Total Pages : 1013 pages
Book Rating : 4.4/5 (448 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Econometrics by : Zvi Griliches

Download or read book Handbook of Econometrics written by Zvi Griliches and published by Elsevier. This book was released on 1983 with total page 1013 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook is a definitive reference source and teaching aid for econometricians. It examines models, estimation theory, data analysis and field applications in econometrics.

Smoothing Methods in Statistics

Download Smoothing Methods in Statistics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461240263
Total Pages : 349 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Smoothing Methods in Statistics by : Jeffrey S. Simonoff

Download or read book Smoothing Methods in Statistics written by Jeffrey S. Simonoff and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focussing on applications, this book covers a very broad range, including simple and complex univariate and multivariate density estimation, nonparametric regression estimation, categorical data smoothing, and applications of smoothing to other areas of statistics. It will thus be of particular interest to data analysts, as arguments generally proceed from actual data rather than statistical theory, while the "Background Material" sections will interest statisticians studying the field. Over 750 references allow researchers to find the original sources for more details, and the "Computational Issues" sections provide sources for statistical software that use the methods discussed. Each chapter includes exercises with a heavily computational focus based upon the data sets used in the book, making it equally suitable as a textbook for a course in smoothing.

Gaussian Processes for Machine Learning

Download Gaussian Processes for Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 026218253X
Total Pages : 266 pages
Book Rating : 4.2/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Processes for Machine Learning by : Carl Edward Rasmussen

Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Kernel Smoothing

Download Kernel Smoothing PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780412552700
Total Pages : 230 pages
Book Rating : 4.5/5 (527 download)

DOWNLOAD NOW!


Book Synopsis Kernel Smoothing by : M.P. Wand

Download or read book Kernel Smoothing written by M.P. Wand and published by CRC Press. This book was released on 1994-12-01 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kernel smoothing refers to a general methodology for recovery of underlying structure in data sets. The basic principle is that local averaging or smoothing is performed with respect to a kernel function. This book provides uninitiated readers with a feeling for the principles, applications, and analysis of kernel smoothers. This is facilitated by the authors' focus on the simplest settings, namely density estimation and nonparametric regression. They pay particular attention to the problem of choosing the smoothing parameter of a kernel smoother, and also treat the multivariate case in detail. Kernal Smoothing is self-contained and assumes only a basic knowledge of statistics, calculus, and matrix algebra. It is an invaluable introduction to the main ideas of kernel estimation for students and researchers from other discipline and provides a comprehensive reference for those familiar with the topic.

Nonparametric Density Estimation

Download Nonparametric Density Estimation PDF Online Free

Author :
Publisher : New York ; Toronto : Wiley
ISBN 13 :
Total Pages : 376 pages
Book Rating : 4.:/5 (319 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Density Estimation by : Luc Devroye

Download or read book Nonparametric Density Estimation written by Luc Devroye and published by New York ; Toronto : Wiley. This book was released on 1985-01-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a rigorous, systematic treatment of density estimates, their construction, use and analysis with full proofs. It develops L1 theory, rather than the classical L2, showing how L1 exposes fundamental properties of density estimates masked by L2.

Applied Nonparametric Statistics in Reliability

Download Applied Nonparametric Statistics in Reliability PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0857291181
Total Pages : 238 pages
Book Rating : 4.8/5 (572 download)

DOWNLOAD NOW!


Book Synopsis Applied Nonparametric Statistics in Reliability by : M. Luz Gámiz

Download or read book Applied Nonparametric Statistics in Reliability written by M. Luz Gámiz and published by Springer Science & Business Media. This book was released on 2011-02-14 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonparametric statistics has probably become the leading methodology for researchers performing data analysis. It is nevertheless true that, whereas these methods have already proved highly effective in other applied areas of knowledge such as biostatistics or social sciences, nonparametric analyses in reliability currently form an interesting area of study that has not yet been fully explored. Applied Nonparametric Statistics in Reliability is focused on the use of modern statistical methods for the estimation of dependability measures of reliability systems that operate under different conditions. The scope of the book includes: smooth estimation of the reliability function and hazard rate of non-repairable systems; study of stochastic processes for modelling the time evolution of systems when imperfect repairs are performed; nonparametric analysis of discrete and continuous time semi-Markov processes; isotonic regression analysis of the structure function of a reliability system, and lifetime regression analysis. Besides the explanation of the mathematical background, several numerical computations or simulations are presented as illustrative examples. The corresponding computer-based methods have been implemented using R and MATLAB®. A concrete modelling scheme is chosen for each practical situation and, in consequence, a nonparametric inference procedure is conducted. Applied Nonparametric Statistics in Reliability will serve the practical needs of scientists (statisticians and engineers) working on applied reliability subjects.

Introduction to Data Science

Download Introduction to Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000708039
Total Pages : 836 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Data Science by : Rafael A. Irizarry

Download or read book Introduction to Data Science written by Rafael A. Irizarry and published by CRC Press. This book was released on 2019-11-20 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.