Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Aspects Of Infinite Groups
Download Aspects Of Infinite Groups full books in PDF, epub, and Kindle. Read online Aspects Of Infinite Groups ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author :Igor R. Shafarevich Publisher :Springer Science & Business Media ISBN 13 :9783540251774 Total Pages :272 pages Book Rating :4.2/5 (517 download)
Book Synopsis Basic Notions of Algebra by : Igor R. Shafarevich
Download or read book Basic Notions of Algebra written by Igor R. Shafarevich and published by Springer Science & Business Media. This book was released on 2005-04-13 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wholeheartedly recommended to every student and user of mathematics, this is an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields studied in every university maths course, through Lie groups to cohomology and category theory, the author shows how the origins of each concept can be related to attempts to model phenomena in physics or in other branches of mathematics. Required reading for mathematicians, from beginners to experts.
Book Synopsis Infinite Group Theory: From The Past To The Future by : Paul Baginski
Download or read book Infinite Group Theory: From The Past To The Future written by Paul Baginski and published by World Scientific. This book was released on 2017-12-26 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of algebraic geometry over groups, geometric group theory and group-based cryptography, has led to there being a tremendous recent interest in infinite group theory. This volume presents a good collection of papers detailing areas of current interest.
Book Synopsis Infinite Linear Groups by : Bertram Wehrfritz
Download or read book Infinite Linear Groups written by Bertram Wehrfritz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: By a linear group we mean essentially a group of invertible matrices with entries in some commutative field. A phenomenon of the last twenty years or so has been the increasing use of properties of infinite linear groups in the theory of (abstract) groups, although the story of infinite linear groups as such goes back to the early years of this century with the work of Burnside and Schur particularly. Infinite linear groups arise in group theory in a number of contexts. One of the most common is via the automorphism groups of certain types of abelian groups, such as free abelian groups of finite rank, torsion-free abelian groups of finite rank and divisible abelian p-groups of finite rank. Following pioneering work of Mal'cev many authors have studied soluble groups satisfying various rank restrictions and their automor phism groups in this way, and properties of infinite linear groups now play the central role in the theory of these groups. It has recently been realized that the automorphism groups of certain finitely generated soluble (in particular finitely generated metabelian) groups contain significant factors isomorphic to groups of automorphisms of finitely generated modules over certain commutative Noetherian rings. The results of our Chapter 13, which studies such groups of automorphisms, can be used to give much information here.
Book Synopsis New Horizons in pro-p Groups by : Marcus du Sautoy
Download or read book New Horizons in pro-p Groups written by Marcus du Sautoy and published by Springer Science & Business Media. This book was released on 2000-05-25 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: A pro-p group is the inverse limit of some system of finite p-groups, that is, of groups of prime-power order where the prime - conventionally denoted p - is fixed. Thus from one point of view, to study a pro-p group is the same as studying an infinite family of finite groups; but a pro-p group is also a compact topological group, and the compactness works its usual magic to bring 'infinite' problems down to manageable proportions. The p-adic integers appeared about a century ago, but the systematic study of pro-p groups in general is a fairly recent development. Although much has been dis covered, many avenues remain to be explored; the purpose of this book is to present a coherent account of the considerable achievements of the last several years, and to point the way forward. Thus our aim is both to stimulate research and to provide the comprehensive background on which that research must be based. The chapters cover a wide range. In order to ensure the most authoritative account, we have arranged for each chapter to be written by a leading contributor (or contributors) to the topic in question. Pro-p groups appear in several different, though sometimes overlapping, contexts.
Download or read book Algebra IV written by A.I. Kostrikin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Group theory is one of the most fundamental branches of mathematics. This highly accessible volume of the Encyclopaedia is devoted to two important subjects within this theory. Extremely useful to all mathematicians, physicists and other scientists, including graduate students who use group theory in their work.
Book Synopsis Infinite Groups: Geometric, Combinatorial and Dynamical Aspects by : Laurent Bartholdi
Download or read book Infinite Groups: Geometric, Combinatorial and Dynamical Aspects written by Laurent Bartholdi and published by Springer Science & Business Media. This book was released on 2006-03-28 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a panorama of recent advances in the theory of infinite groups. It contains survey papers contributed by leading specialists in group theory and other areas of mathematics. Topics include amenable groups, Kaehler groups, automorphism groups of rooted trees, rigidity, C*-algebras, random walks on groups, pro-p groups, Burnside groups, parafree groups, and Fuchsian groups. The accent is put on strong connections between group theory and other areas of mathematics.
Book Synopsis Notes on Infinite Permutation Groups by : Meenaxi Bhattacharjee
Download or read book Notes on Infinite Permutation Groups written by Meenaxi Bhattacharjee and published by Springer. This book was released on 2006-11-14 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book, based on a course of lectures by the authors at the Indian Institute of Technology, Guwahati, covers aspects of infinite permutation groups theory and some related model-theoretic constructions. There is basic background in both group theory and the necessary model theory, and the following topics are covered: transitivity and primitivity; symmetric groups and general linear groups; wreatch products; automorphism groups of various treelike objects; model-theoretic constructions for building structures with rich automorphism groups, the structure and classification of infinite primitive Jordan groups (surveyed); applications and open problems. With many examples and exercises, the book is intended primarily for a beginning graduate student in group theory.
Book Synopsis Topics in Infinite Group Theory by : Benjamin Fine
Download or read book Topics in Infinite Group Theory written by Benjamin Fine and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-08-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an advanced overview of several topics in infinite group theory. It can also be considered as a rigorous introduction to combinatorial and geometric group theory. The philosophy of the book is to describe the interaction between these two important parts of infinite group theory. In this line of thought, several theorems are proved multiple times with different methods either purely combinatorial or purely geometric while others are shown by a combination of arguments from both perspectives. The first part of the book deals with Nielsen methods and introduces the reader to results and examples that are helpful to understand the following parts. The second part focuses on covering spaces and fundamental groups, including covering space proofs of group theoretic results. The third part deals with the theory of hyperbolic groups. The subjects are illustrated and described by prominent examples and an outlook on solved and unsolved problems.
Download or read book Linear Groups written by Martyn R. Dixon and published by CRC Press. This book was released on 2020-04-03 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Groups: The Accent on Infinite Dimensionality explores some of the main results and ideas in the study of infinite-dimensional linear groups. The theory of finite dimensional linear groups is one of the best developed algebraic theories. The array of articles devoted to this topic is enormous, and there are many monographs concerned with matrix groups, ranging from old, classical texts to ones published more recently. However, in the case when the dimension is infinite (and such cases arise quite often), the reality is quite different. The situation with the study of infinite dimensional linear groups is like the situation that has developed in the theory of groups, in the transition from the study of finite groups to the study of infinite groups which appeared about one hundred years ago. It is well known that this transition was extremely efficient and led to the development of a rich and central branch of algebra: Infinite group theory. The hope is that this book can be part of a similar transition in the field of linear groups. Features This is the first book dedicated to infinite-dimensional linear groups This is written for experts and graduate students specializing in algebra and parallel disciplines This book discusses a very new theory and accumulates many important and useful results
Book Synopsis Representations of the Infinite Symmetric Group by : Alexei Borodin
Download or read book Representations of the Infinite Symmetric Group written by Alexei Borodin and published by Cambridge University Press. This book was released on 2017 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the modern representation theory of big groups, exploring its connections to probability and algebraic combinatorics.
Book Synopsis The Theory of Infinite Soluble Groups by : John C. Lennox
Download or read book The Theory of Infinite Soluble Groups written by John C. Lennox and published by Clarendon Press. This book was released on 2004-08-19 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: The central concept in this monograph is that of a soluble group - a group which is built up from abelian groups by repeatedly forming group extensions. It covers all the major areas, including finitely generated soluble groups, soluble groups of finite rank, modules over group rings, algorithmic problems, applications of cohomology, and finitely presented groups, whilst remaining fairly strictly within the boundaries of soluble group theory. An up-to-date survey of the area aimed at research students and academic algebraists and group theorists, it is a compendium of information that will be especially useful as a reference work for researchers in the field.
Book Synopsis Subgroup Growth by : Alexander Lubotzky
Download or read book Subgroup Growth written by Alexander Lubotzky and published by Birkhäuser. This book was released on 2012-12-06 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2001. Subgroup growth studies the distribution of subgroups of finite index in a group as a function of the index. In the last two decades this topic has developed into one of the most active areas of research in infinite group theory; this book is a systematic and comprehensive account of the substantial theory which has emerged. As well as determining the range of possible 'growth types', for finitely generated groups in general and for groups in particular classes such as linear groups, a main focus of the book is on the tight connection between the subgroup growth of a group and its algebraic structure. A wide range of mathematical disciplines play a significant role in this work: as well as various aspects of infinite group theory, these include finite simple groups and permutation groups, profinite groups, arithmetic groups and Strong Approximation, algebraic and analytic number theory, probability, and p-adic model theory. Relevant aspects of such topics are explained in self-contained 'windows'.
Book Synopsis The Geometry of Infinite-Dimensional Groups by : Boris Khesin
Download or read book The Geometry of Infinite-Dimensional Groups written by Boris Khesin and published by Springer Science & Business Media. This book was released on 2008-09-28 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph gives an overview of various classes of infinite-dimensional Lie groups and their applications in Hamiltonian mechanics, fluid dynamics, integrable systems, gauge theory, and complex geometry. The text includes many exercises and open questions.
Book Synopsis Groups, Graphs and Trees by : John Meier
Download or read book Groups, Graphs and Trees written by John Meier and published by Cambridge University Press. This book was released on 2008-07-31 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This outstanding new book presents the modern, geometric approach to group theory, in an accessible and engaging approach to the subject. Topics include group actions, the construction of Cayley graphs, and connections to formal language theory and geometry. Theorems are balanced by specific examples such as Baumslag-Solitar groups, the Lamplighter group and Thompson's group. Only exposure to undergraduate-level abstract algebra is presumed, and from that base the core techniques and theorems are developed and recent research is explored. Exercises and figures throughout the text encourage the development of geometric intuition. Ideal for advanced undergraduates looking to deepen their understanding of groups, this book will also be of interest to graduate students and researchers as a gentle introduction to geometric group theory.
Book Synopsis Topics in Groups and Geometry by : Tullio Ceccherini-Silberstein
Download or read book Topics in Groups and Geometry written by Tullio Ceccherini-Silberstein and published by Springer Nature. This book was released on 2022-01-01 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed exposition of a wide range of topics in geometric group theory, inspired by Gromov’s pivotal work in the 1980s. It includes classical theorems on nilpotent groups and solvable groups, a fundamental study of the growth of groups, a detailed look at asymptotic cones, and a discussion of related subjects including filters and ultrafilters, dimension theory, hyperbolic geometry, amenability, the Burnside problem, and random walks on groups. The results are unified under the common theme of Gromov’s theorem, namely that finitely generated groups of polynomial growth are virtually nilpotent. This beautiful result gave birth to a fascinating new area of research which is still active today. The purpose of the book is to collect these naturally related results together in one place, most of which are scattered throughout the literature, some of them appearing here in book form for the first time. In this way, the connections between these topics are revealed, providing a pleasant introduction to geometric group theory based on ideas surrounding Gromov's theorem. The book will be of interest to mature undergraduate and graduate students in mathematics who are familiar with basic group theory and topology, and who wish to learn more about geometric, analytic, and probabilistic aspects of infinite groups.
Download or read book Profinite Groups written by Luis Ribes and published by Springer Science & Business Media. This book was released on 2013-04-09 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained book serves both as an introduction to profinite groups and as a reference for specialists in some areas of the theory. It contains complete and clear proofs for most results, many of which appear here in book form for the first time. Suitable as a basis for courses.
Book Synopsis Topics in Infinite Group Theory by : Benjamin Fine
Download or read book Topics in Infinite Group Theory written by Benjamin Fine and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-08-23 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an advanced overview of several topics in infinite group theory. It can also be considered as a rigorous introduction to combinatorial and geometric group theory. The philosophy of the book is to describe the interaction between these two important parts of infinite group theory. In this line of thought, several theorems are proved multiple times with different methods either purely combinatorial or purely geometric while others are shown by a combination of arguments from both perspectives. The first part of the book deals with Nielsen methods and introduces the reader to results and examples that are helpful to understand the following parts. The second part focuses on covering spaces and fundamental groups, including covering space proofs of group theoretic results. The third part deals with the theory of hyperbolic groups. The subjects are illustrated and described by prominent examples and an outlook on solved and unsolved problems.