Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Annihilating Ideals Of Standard Modules Of Sl2c Superscript And Combinatorial Identities
Download Annihilating Ideals Of Standard Modules Of Sl2c Superscript And Combinatorial Identities full books in PDF, epub, and Kindle. Read online Annihilating Ideals Of Standard Modules Of Sl2c Superscript And Combinatorial Identities ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Expansion in Finite Simple Groups of Lie Type by : Terence Tao
Download or read book Expansion in Finite Simple Groups of Lie Type written by Terence Tao and published by American Mathematical Soc.. This book was released on 2015-04-16 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.
Book Synopsis Representation Theory by : William Fulton
Download or read book Representation Theory written by William Fulton and published by Springer Science & Business Media. This book was released on 1991 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.
Book Synopsis Dirac Operators in Representation Theory by : Jing-Song Huang
Download or read book Dirac Operators in Representation Theory written by Jing-Song Huang and published by Springer Science & Business Media. This book was released on 2007-05-27 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. The book is an excellent contribution to the mathematical literature of representation theory, and this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics.
Book Synopsis Topological Modular Forms by : Christopher L. Douglas
Download or read book Topological Modular Forms written by Christopher L. Douglas and published by American Mathematical Soc.. This book was released on 2014-12-04 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of topological modular forms is an intricate blend of classical algebraic modular forms and stable homotopy groups of spheres. The construction of this theory combines an algebro-geometric perspective on elliptic curves over finite fields with techniques from algebraic topology, particularly stable homotopy theory. It has applications to and connections with manifold topology, number theory, and string theory. This book provides a careful, accessible introduction to topological modular forms. After a brief history and an extended overview of the subject, the book proper commences with an exposition of classical aspects of elliptic cohomology, including background material on elliptic curves and modular forms, a description of the moduli stack of elliptic curves, an explanation of the exact functor theorem for constructing cohomology theories, and an exploration of sheaves in stable homotopy theory. There follows a treatment of more specialized topics, including localization of spectra, the deformation theory of formal groups, and Goerss-Hopkins obstruction theory for multiplicative structures on spectra. The book then proceeds to more advanced material, including discussions of the string orientation, the sheaf of spectra on the moduli stack of elliptic curves, the homotopy of topological modular forms, and an extensive account of the construction of the spectrum of topological modular forms. The book concludes with the three original, pioneering and enormously influential manuscripts on the subject, by Hopkins, Miller, and Mahowald.
Book Synopsis The Langlands Classification and Irreducible Characters for Real Reductive Groups by : J. Adams
Download or read book The Langlands Classification and Irreducible Characters for Real Reductive Groups written by J. Adams and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph explores the geometry of the local Langlands conjecture. The conjecture predicts a parametrizations of the irreducible representations of a reductive algebraic group over a local field in terms of the complex dual group and the Weil-Deligne group. For p-adic fields, this conjecture has not been proved; but it has been refined to a detailed collection of (conjectural) relationships between p-adic representation theory and geometry on the space of p-adic representation theory and geometry on the space of p-adic Langlands parameters. This book provides and introduction to some modern geometric methods in representation theory. It is addressed to graduate students and research workers in representation theory and in automorphic forms.
Book Synopsis Generalized Vertex Algebras and Relative Vertex Operators by : Chongying Dong
Download or read book Generalized Vertex Algebras and Relative Vertex Operators written by Chongying Dong and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapidly-evolving theory of vertex operator algebras provides deep insight into many important algebraic structures. Vertex operator algebras can be viewed as "complex analogues" of both Lie algebras and associative algebras. The monograph is written in a n accessible and self-contained manner, with detailed proofs and with many examples interwoven through the axiomatic treatment as motivation and applications. It will be useful for research mathematicians and theoretical physicists working the such fields as representation theory and algebraic structure sand will provide the basis for a number of graduate courses and seminars on these and related topics.
Book Synopsis Introduction to Soergel Bimodules by : Ben Elias
Download or read book Introduction to Soergel Bimodules written by Ben Elias and published by Springer Nature. This book was released on 2020-09-26 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to Soergel bimodules. First introduced by Wolfgang Soergel in the early 1990s, they have since become a powerful tool in geometric representation theory. On the one hand, these bimodules are fairly elementary objects and explicit calculations are possible. On the other, they have deep connections to Lie theory and geometry. Taking these two aspects together, they offer a wonderful primer on geometric representation theory. In this book the reader is introduced to the theory through a series of lectures, which range from the basics, all the way to the latest frontiers of research. This book serves both as an introduction and as a reference guide to the theory of Soergel bimodules. Thus it is intended for anyone who wants to learn about this exciting field, from graduate students to experienced researchers.
Book Synopsis Geometry and Complexity Theory by : J. M. Landsberg
Download or read book Geometry and Complexity Theory written by J. M. Landsberg and published by Cambridge University Press. This book was released on 2017-09-28 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.
Book Synopsis Linear Algebra and Geometry by : P. K. Suetin
Download or read book Linear Algebra and Geometry written by P. K. Suetin and published by CRC Press. This book was released on 1997-10-01 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced textbook on linear algebra and geometry covers a wide range of classical and modern topics. Differing from existing textbooks in approach, the work illustrates the many-sided applications and connections of linear algebra with functional analysis, quantum mechanics and algebraic and differential geometry. The subjects covered in some detail include normed linear spaces, functions of linear operators, the basic structures of quantum mechanics and an introduction to linear programming. Also discussed are Kahler's metic, the theory of Hilbert polynomials, and projective and affine geometries. Unusual in its extensive use of applications in physics to clarify each topic, this comprehensice volume should be of particular interest to advanced undergraduates and graduates in mathematics and physics, and to lecturers in linear and multilinear algebra, linear programming and quantum mechanics.
Book Synopsis The Connective K-Theory of Finite Groups by : Robert Ray Bruner
Download or read book The Connective K-Theory of Finite Groups written by Robert Ray Bruner and published by American Mathematical Soc.. This book was released on 2003 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes a paper that deals the connective K homology and cohomology of finite groups $G$. This title uses the methods of algebraic geometry to study the ring $ku DEGREES*(BG)$ where $ku$ denotes connective complex K-theory. It describes the variety in terms of the category of abelian $p$-subgroups of $G$ for primes $p$ dividing the group
Book Synopsis Algorithmic Number Theory by : Claus Fieker
Download or read book Algorithmic Number Theory written by Claus Fieker and published by Springer Science & Business Media. This book was released on 2002-06-26 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-organized criticality (SOC) has become a magic word in various scientific disciplines; it provides a framework for understanding complexity and scale invariance in systems showing irregular fluctuations. In the first 10 years after Per Bak and his co-workers presented their seminal idea, more than 2000 papers on this topic appeared. Seismology has been a field in earth sciences where the SOC concept has already deepened the understanding, but there seem to be much more examples in earth sciences where applying the SOC concept may be fruitful. After introducing the reader into the basics of fractals, chaos and SOC, the book presents established and new applications of SOC in earth sciences, namely earthquakes, forest fires, landslides and drainage networks.
Book Synopsis Quadratic Forms and Their Applications by : Eva Bayer-Fluckiger
Download or read book Quadratic Forms and Their Applications written by Eva Bayer-Fluckiger and published by American Mathematical Soc.. This book was released on 2000 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume outlines the proceedings of the conference on "Quadratic Forms and Their Applications" held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed. Special features include the first published proof of the Conway-Schneeberger Fifteen Theorem on integer-valued quadratic forms and the first English-language biography of Ernst Witt, founder of the theory of quadratic forms.
Book Synopsis Eisenstein Series and Applications by : Wee Teck Gan
Download or read book Eisenstein Series and Applications written by Wee Teck Gan and published by Springer Science & Business Media. This book was released on 2007-12-22 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eisenstein series are an essential ingredient in the spectral theory of automorphic forms and an important tool in the theory of L-functions. They have also been exploited extensively by number theorists for many arithmetic purposes. Bringing together contributions from areas which do not usually interact with each other, this volume introduces diverse users of Eisenstein series to a variety of important applications. With this juxtaposition of perspectives, the reader obtains deeper insights into the arithmetic of Eisenstein series. The central theme of the exposition focuses on the common structural properties of Eisenstein series occurring in many related applications.
Book Synopsis Algebra, Arithmetic, and Geometry by : Yuri Tschinkel
Download or read book Algebra, Arithmetic, and Geometry written by Yuri Tschinkel and published by Springer Science & Business Media. This book was released on 2010-04-11 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: EMAlgebra, Arithmetic, and Geometry: In Honor of Yu. I. ManinEM consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics.
Book Synopsis A Classical Invitation to Algebraic Numbers and Class Fields by : Harvey Cohn
Download or read book A Classical Invitation to Algebraic Numbers and Class Fields written by Harvey Cohn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Artin's 1932 Göttingen Lectures on Class Field Theory" and "Connections between Algebrac Number Theory and Integral Matrices"
Book Synopsis Introduction to Vassiliev Knot Invariants by : S. Chmutov
Download or read book Introduction to Vassiliev Knot Invariants written by S. Chmutov and published by Cambridge University Press. This book was released on 2012-05-24 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed exposition of the theory with an emphasis on its combinatorial aspects.
Book Synopsis Linear Algebra and Geometry by : Igor R. Shafarevich
Download or read book Linear Algebra and Geometry written by Igor R. Shafarevich and published by Springer Science & Business Media. This book was released on 2012-08-23 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.